

Considerations for Animal Use and Sustainability – A Regulatory Perspective

Robin Levis, PhD
Deputy Director,
Division of Viral Products
Office of Vaccines Research and Review
CBER/FDA/DHHS

Presentation Overview

- Overview of animal testing for product development and release testing.
 - Alternative test development related to 3Rs
- Animals and sustainability
 - Rabbit pyrogen test
 - Limulocyte activation test
 - Other examples:
 - Squalene used for adjuvant production
 - NHPs used for vaccine testing
- Role for regulators in the sustainability discussion

Important to remember!

- Research is essential!
 - Development of new technologies and new ways to produce vaccines improves our ability to make available state of the art vaccines
- Evolution is important!
 - We need to create and utilize pathways that allow for the introduction of new technologies while retaining safety and purity of vaccines
- The best efforts are collaborative efforts
 - Including academic, industry, and regulatory participation
- Science drives regulatory decision making

- Quality control testing must:
 - Ensure the safety, purity, and potency of the product
 - Code of Federal Regulations (for US)
 - Demonstrate a consistent manufacturing process
 - Adherence to cGMPs
 - Rely on the best technology available
 - Assays need to be fit for purpose
 - Be flexible to allow evolution of testing programs
 - Often difficult to incorporate new technology
 - Barriers include inconsistency in regulatory expectations
 - Make room for the principles of 3Rs
 - Start to consider sustainability issues?
 - Material use and carbon footprint
 - Animal use

- Reduction of animal testing
 - Removal of the requirement for the General Safety Test (GST)
- Refinement of animal testing
 - Mumps vaccine
 - Monkey neurovirulence vs. rat neurovirulence
- Replacement (substitutions) of animal testing
 - Adventitious agents testing
 - Multiple animal assays vs. high throughput sequencing (HTS)
 - DTaP vaccine
 - Lethal histamine sensitization assay in mice vs. in vitro CHO cell-based assay
 - Inactivated poliovirus vaccine
 - Rat immunogenicity vs. antigen ELISA
 - HepB virus, HPV and other vaccines
 - Immunogenicity in mice vs. ELISA
 - Inactivated rabies virus vaccine
 - Lethal challenge in mice vs. antigen ELISA

Alternate test development and sustainability - 1

- Many ongoing efforts to reduce animal use in testing
- Sustainability has not been a critical part of the discussion
- Two critical issues related to animal use and sustainability to consider
 - Use of animal raised in breeding facilities
 - Use of animals when alternative assays are available
 - Energy and resources used to maintain animal facilities
 - Use of wild caught animals
 - Use of animals when alternative assays are available
 - Endangerment of animal species
 - Endangerment of habitat and impact on other animal species

Alternate test development and sustainability - 2

- Benefits of alternative test development to sustainability for animals provided from controlled breeding facilities
 - Rabies NIH Potency test vs ELISA method under development
 - 300+ animal used per test (in US)
 - Test can take up to six weeks to complete
 - Multiple retests based on validity criteria not being met
 - Rabbit pyrogen test vs MAT assay
 - Hundreds of thousands of rabbits used annually

Bacterial endotoxin testing - LAL test

- Based on blood collected from wild caught horseshoe crabs
 - 4 species of crabs: 3 in Asia, 1 in North America
- North American species is listed as "vulnerable" with respect to population numbers
 - No restrictions on collection and use
- More than 500,000 crabs are caught and bled annually
- Impacts horseshoe crab population as well as shore birds that have evolved a migration time and route to coincide with egg laying by horseshoe crabs to sustain the bird migratory bird population

PLOS Biology | https://doi.org/10.1371/journal.pbio.2006607 October 12, 2018

Alternative to LAL testing

Recombinant Factor C:

- Bacterial endotoxin test based on recombinant factor C
 - Factor C is the first protein involved in the cascade of events that leads to LAL read out from horseshoe crab blood.
 - Endotoxin testing using recombinant factor C has been shown to be as sensitive as LAL testing.
 - Introduced over ten years ago.
 - How do we encourage the change to recombinant factor C use?

Environmental impact of animal use - 2

Non-human primates for pre-clinical testing and product development

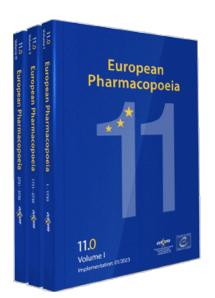
- Used for safety and biodistribution studies
- Used for vaccine challenge studies
- Historically, animals were wild caught and imported.
 - This practice impacted the natural populations and habitats for many animals, destroyed family units, impacted population numbers
- Current regulations for primates used for testing include a requirement that imported animals have paperwork to ensure provenance and that they have been bred for laboratory use, however:
 - During the COVID epidemic the need for NHPs was so great that some Asian suppliers implemented the practice of using wild caught NHPs

Alternatives to use of NHPs

- In vitro methods
- Other relevant small animal models
- Organ on a chip technology
 - Shown to be equivalent or better than current animal models
 - From a time, sustainability, and financial point of view

Squalene used for adjuvant production

- Sourced from shark liver oil
- Severe over-fishing of shark population in general
 - In addition, the synthesis of other by products such as squalene lead to further depletion


Alternatives to shark liver oil for squalene synthesis

- Kilo-Scale GMP Synthesis of Renewable Semisynthetic Vaccine-Grade Squalene
- Development of yeast that produce the sesquiterpene trans- θ -farnesene which is now produced commercially by fermentation of sustainably grown sugar cane.
- Trans-β-farnesene is used for the commercial semi-synthesis of squalene used as an emollient
- Used as the precursor for a series of squalene analogues, some of which display vaccine adjuvant properties equivalent or superior to squalene when appropriately formulated in o/w emulsions.

► Ph. Eur. exercise to phase out the rabbit pyrogen test

Towards animal free pyrogen tests in the Ph. Eur: latest progress

11th PharmaLab Congress – Endotoxin and Pyrogen Testing Düsseldorf, 21-22 November 2023

Gwenael Cirefice, EDQM Biologicals 84 (2023) 101702

Assays for pyrogens / endotoxins in the Ph. Eur.

1971 Pyrogens (2.6.8)

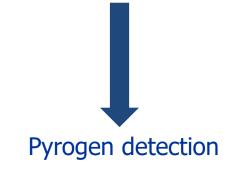
("Rabbit Pyrogen Test")

Pyrogen detection

1987

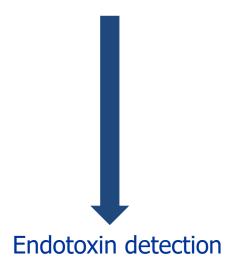
LAL is a lyophilised amoebocyte lysate obtained from the horseshoe crab (*L. polyphemus* or *T. tridentatus*)

BET (2.6.14) & Guidelines for using the BET (5.1.10)



2010

Monocyte-activation test (2.6.30)


MAT for vaccines containing inherently pyrogenic components (2.6.40) [NEW]

2020

BET using recombinant Factor C (2.6.32)

Timelines

WHAT	WHO	WHEN	
		Publication in PhPa	Envisaged implementation date
Elaboration of new chapter on Pyrogenicity (5.1.13) (and revision of chapter 5.1.10)	BET WP		
REVISION			
Chapter 2.6.30	BET WP		
Gen. monograph 2034	BET WP		
Gen. monograph 0520	G12 with BET WP support		
All other Ph. Eur. texts	GoE/WP with BET WP support		
Pyrogens (2.6.8)			
		April	July July
	2022	Jan 2023 Jan 2024	Jan 2025 Jan 2026