Novel Mass Spectrometry-Based Footprinting Method for RNA Higher Order Structure

Hsin-Chieh (Natashia) Yang¹, Mengqi Chai¹, Leah Hanliu Wang², Brian Gau², Michael L. Gross¹

¹Washington University in St. Louis, Chemistry Department ²Bioptherapeutics Pharm. Sci., Pfizer Inc, St Louis, MO, USA

🕃 Washington University in St. Louis

CASSS MS 2024/09/10

Diversity of RNA types

Suleiman, A. A.; Al-Chalabi, R.; Shaban, S. A. Mol. Biol. Rep. 2024, 51 (1), 107.

Structure of RNA

Current landscape of RNA structure determination

A palette of chemical probes to interrogate many layers of RNA structure

Chemical probe for RNA footprinting

Gilmer, O.; Quignon, E.; Jousset, A.-C.; Paillart, J.-C.; Marquet, R.; Vivet-Boudou, V. Viruses 2021, 13 (10), 1894.

Develop a mass spectrometry- based footprinting approach for RNA higherorder structure (HOS)

Created with BioRender.com

Reagent candidates

Base-specific probe

- Dimethyl sulfate (DMS)
- Diethyl pyrocarbonate (DEPC)
- Nicotinoyl Azide (NAz)
- Hydrogen peroxide (OH radical)
- 4-(Trifluoromethoxy)benzyl bromide (Carbocations (R₃C⁺))

Sugar-phosphate targeting probe

- 1-Methyl-7-nitroisatoic anhydride (1M7)
- Benzoyl Fluoride (Base; 2'-OH)
- Hydrogen peroxide (OH radical)
- 4-(Trifluoromethoxy)benzyl bromide (Carbocations (R₃C⁺))

4-(Trifluoromethoxy)benzyl bromide

RNA (10mer): ACAAAACAAG

Reagent	Molar ratio	Laser	Reaction time	Mass shift (Da)	Modification level
DMS	50000	no	1.5 mins 10 mins	14	7% 51%
1M7 (SHAPE)	10000	no	1.5 mins	178	75%
DEPC	10000	no	10 mins	72; 62	86%
BF	5000	no	10 mins	104	7%
FPOP(H ₂ O ₂)	2000	yes	laser	16	14%
TBF (carbocation)	10000	yes	laser	174	7%

RNA (12mer): GGGUUUCCCAAA

Reagent	Molar ratio	Laser	Reaction time	Mass shift (Da)	Modificatio n level
DMS	50000 10000 5000	No	10 mins	14	47% 41% 32%
1M7 (SHAPE)	10000 5000 1000	no	1.5 mins	178	75% 36% 20%
BF	10000 5000 2000	no	10 mins	104	7% 4% 4%
FPOP(H ₂ O ₂)	2000	yes	laser	16	14%

 $Modification Level = \frac{EIC Area_{modified}}{EIC Area_{Unmodified} + EIC Area_{modified}}$

1-Methyl-7-nitroisatoic-anhydride (1M7) labeling mechanism

1M7 is a SHAPE (Selective 2' Hydroxyl Acylation analyzed by Primer Extension) reagent

10mer from PreQ1: ACAAAACAAG

 $M_{RNA} + C_8 H_6 N_2 O_3$ (Mass shift in Mass spectrum: $M_{RNA} + 178$)

Experimental condition of 1M7 labeling

RNA Oligo conc. (μM)	1M7/10mer (molar ratio)	Reaction Temp. (°C)	Buffer, solvent	Time (min)	Shaking speed (rpm)
1	10,000	37	10% DMSO in PBS	1.5	200
1	5,000	37	10% DMSO in PBS	1.5	200
1	1,000	37	10% DMSO in PBS	1.5	200

- Quench the reaction by loading to the LC column immediately after 1.5 min-incubation.
- Inject 50 pmol of 10 mer for LC-MS analysis

LC Gradient for 10mer Oligo

LC and MS of 1M7 labeling

Chromatogram (EIC)

* : Oxidated RNA adduct Triethylamine (TEA)

10mer Oligonucleotide, ACAAAACAAG 10000 molar ratio, 37 °C, 1.5 min,

*

Modification level as a function of 1M7 amount

DMS labeling mechanism

HB: Hydrogen Bonding

Unmodified

Modification level as a function of DMS amount

Deconvoluted MS

12mer Oligonucleotide, GGGUUUCCCAAA 10000 molar ratio, 37 °C, 10 min

DMS labeling of PreQ1 riboswitch

Jenkins, J. L.; Krucinska, J.; McCarty, R. M.; Bandarian, V.; Wedekind, J. E. J. Biol. Chem. 2011, 286 (28), 24626–24637.

Modification level as a function of DMS amount

Deconvoluted MS

Conclusions:

Conclusions:

- 1. Set up the MS-based footprinting for sub-nucleotide RNA structural characterization.
- 2. Develop labeling strategies for MS detection by using model oligonucleotides with several reagents.
- 3. Screen a series of chemical footprinting reagents, including backbone footprinting (hydroxyl radical, SHAPE reagent, benzoyl fluoride) and base-specific probes (dimethyl sulfate, diethylpyrocarbonate, nicotinoyl azide).
- 4. Define the most effective reagent for labeling is DEPC, then 1M7, and DMS. The modification levels are 86%, 75% and 51%, respectively, under comparable conditions.

Next steps:

- Test other reagents (e.g., carbocations) are also being tested.
- Use MS/MS to further elucidate the accurate site of modification.
- Apply to large-size RNA and RNA interacting with lipid nanoparticles under various conditions.

Acknowledgement

- Dr. Brian Gau
- Dr. Leah Wang

Washington University in St. Louis

- Prof. Michael L. Gross
- Dr. Mengqi Chai
- Dr. Sanjeev Kumar
- Dr. Henry Rohrs
- Don Rempel
- Dr. Nicole Wagner
- Dr. Jie Sun
- Wesley Wagner
- Xinyi Kuang
- Nolan McLaughlin
- Dr. Daryl Giblin

Thank you for your attention!