

sanofi

Intact Mass Characterization of Multispecific Therapeutic Antibodies *Kalie Mix*

Principal Scientist, Large Molecule Research

Outline

- Large Molecule Research Group at Sanofi
- Multi-specific antibodies: formats and analytical methods
- Mass spec for high-throughput samples (early-stage screening)
- Mass spec for medium-throughput samples (protein production QC)
- Technology development and ongoing challenges

sanofi

Large Molecule Research at Sanofi

Supporting early-stage antibody discovery research for therapeutic areas across the company

- Antibody and antigen production
- Protein QC & binding assays

sanofi

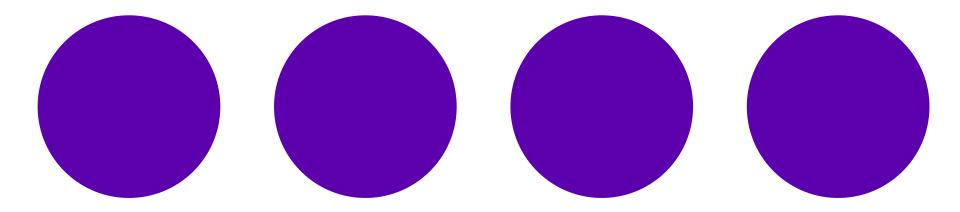
Molecular Engineering & Screening Technologies

- DNA synthesis
- Highthroughput screening assays

• Developability analysis

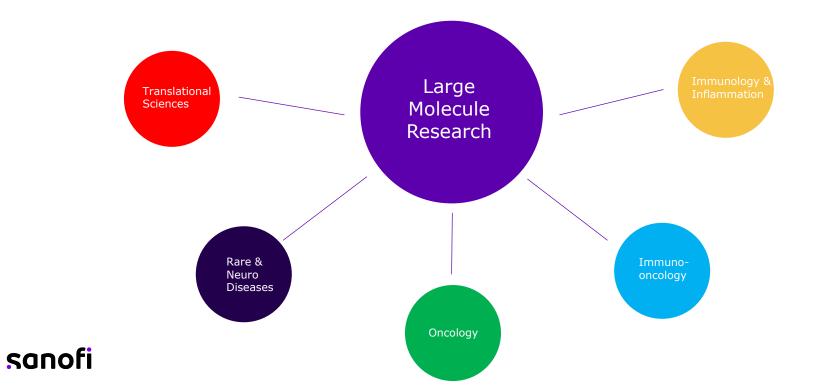
Protein

Engineering


 Engineering optimal function & eliminating liabilities

- Phage display
- Single B-cell
 cloning

Large Molecule Research at Sanofi


Supporting early-stage antibody discovery research for therapeutic areas across the company

sanofi

Large Molecule Research at Sanofi

Supporting early-stage antibody discovery research for therapeutic areas across the company

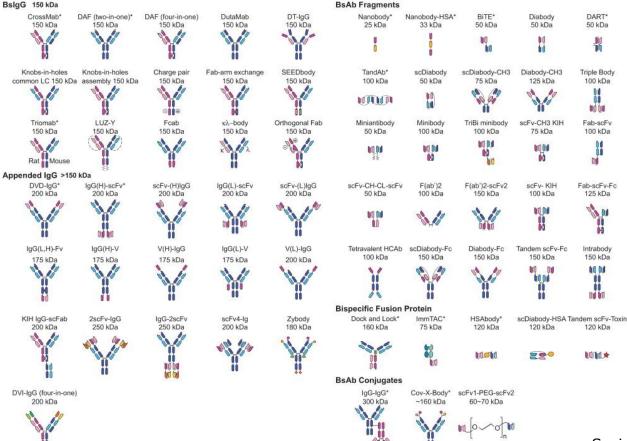
Intact Mass Analysis of Therapeutic Proteins within Protein Production Group

Role in our workflow:

 Mass spec data is used to evaluate protein quality and decide which proteins might make good therapeutic candidates

Instrumentation: Agilent 6545XT Q-TOF

- Designed especially for characterization of large proteins
- Can also be used for released glycans, subunits, peptides, small molecules, etc.


Multispecific Antibodies

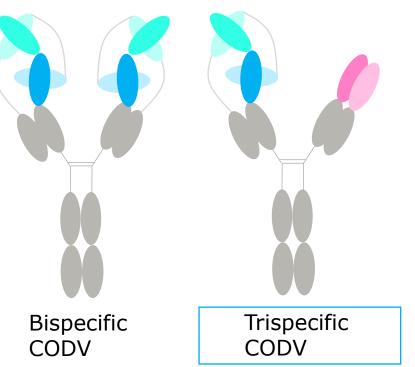
- Monoclonal antibodies are a well-established drug class that is growing rapidly
- Many complex disease pathways can be modulated more effectively by engaging multiple targets
- Multispecific antibodies can enable novel functions compared to mixtures of parental antibodies
- Many mechanisms of action are possible:
 - cell bridging
 - receptor cross-linking for agonism or inhibition
 - mimicking of cofactors to position enzyme & substrate
 - employing binding event for transport
- >>100 msAbs in clinical development for diverse indications; cancer, immunology & inflammation, hemophilia, diabetes, HIV, osteoporosis...

sanofi

Labrijn, A.F. *et. al, Nat Rev Drug Discov*, **2019**, *18.* Xu, L. *et. al, Science* **2017**, *358.* 7

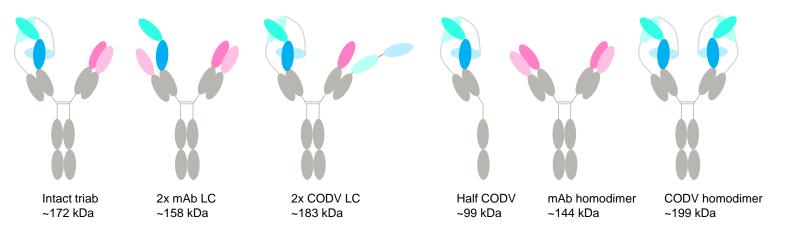
Advances in Multispecific Antibody Formats: A Plethora of Options

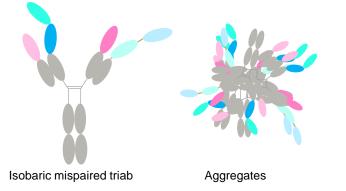
Considerations for format selection:


- PK/PD properties
- Fc effector function
- Chain pairing
- Binding valency & geometry
- Developability

Speiss, C. et. al., Mol. Immunol. 2015, 67.

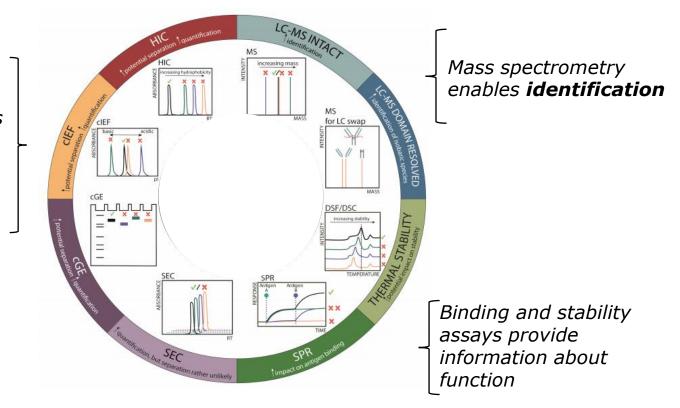
Sanofi Multispecific Antibody Format: CODV


Cross-Over Dual Variable Ig-like Proteins


- Enables binding to 2 or 3 different antigens
- Close similarity to natural IgG
- No N- or C-terminal VH or VL extensions
- Linkers promote defined paratope orientations
- Pharmacokinetic properties and effector functions can be tuned using Fc mutations
- Symmetrical nature of bispecific CODV avoids chain mispairing challenge

sanofi

Chain Mispairing in Triab CODVs



- Mispaired molecules present expression/purification challenges and can hinder downstream assays
- Many internal efforts under way to optimize engineering, expression, and purification
- Identification and quantification of each molecule is critical for identifying best candidates and optimizing production

Characterization of Triab CODVs

Separation techniques with A280 protein detection enable **quantification**

Ercole Rao, et. al. J. Appl. Bioanalysis 2020, 6.

Multispecific Antibody Discovery Workflow

ID/Production of parental mAbs

1000+ binders from mice Screen by ELISA Eliminate redundant sequences Re-format to hIgG

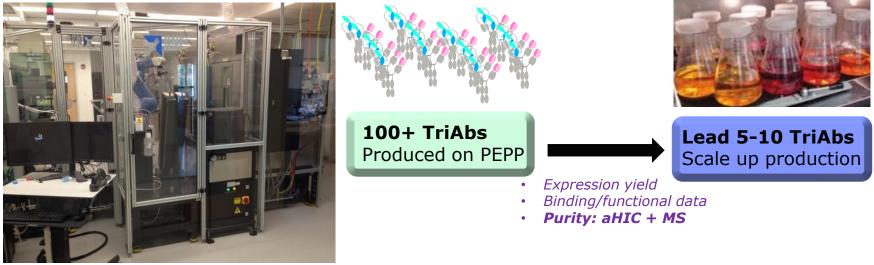
HT Production of multi-specific Abs

~200+ proteins Titer Binding Basic activity assays Purity after proA purification

Intact mass:

Determine % abundance of intact triab vs. mispaired molecules

Mid-scale production of leads

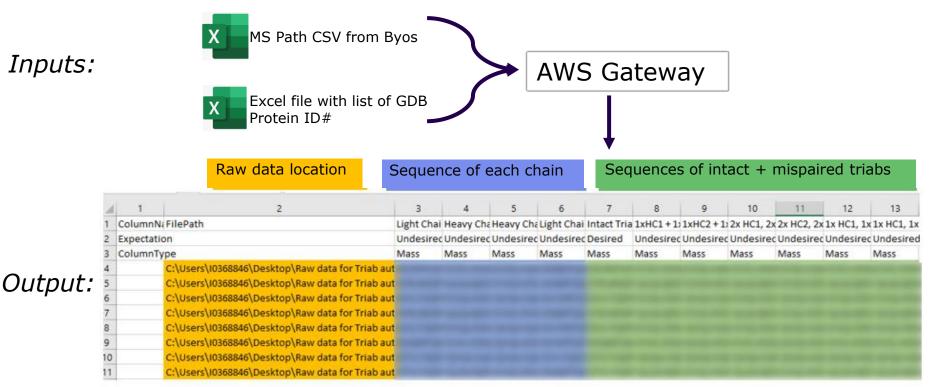

5-10 triabs expressed transiently In-depth binding characterization Cell-based assays Initial in vivo work

Intact mass:

ID species present after ProA
 Determine fraction pooling
 Final QC

sanofi

High-Throughput Production of Trispecific CODV Antibodies



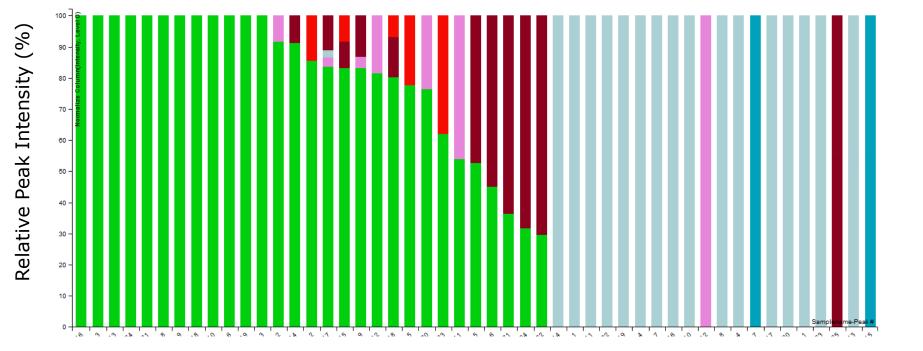
Protein Expression & Purification Platform

Challenge: Importing information for intact + each mispaired molecule ...**AND** matching it to each raw data file

HT Triab Analysis using AWS and Byos

- Task:
- 1. Query Genedata Biologics to retrieve sequences for all triabs on a sample list
- 2. Combine the chains for the intact and mispaired molecules
- 3. Create an output file that matches the raw data will all the sequences for each triab

Internal


Lab Automation Team

Project Creation Options for HT Analysis

mples Sequences and r	nasses Sample-p	protein input	Processing nodes							
				Sampl	es-proteins					
FilePath	Sampl npleNa Samplel SampleN		Light Chain 1 Mass Undesired	Heavy Chain 1 Mass Undesired	Heavy Chain 2 Mass Undesired	Light Chain 2 Mass Undesired	Intact TPP Mass Desired	1xHC1 + 1x LC1 Mass Undesired	1xHC2 + 1xLC2 Mass Undesired	2x ł ^
G:\Kalie\2022\20220224										
G:\Kalie\2022\20220224										
G:\Kalie\2022\20220224										
G:\Kalie\2022\20220224										
G:\Kalie\2022\20220224										
G:\Kalie\2022\20220224										
G:\Kalie\2022\20220224										
G:\Kalie\2022\20220224										
G:\Kalie\2022\20220224										
G:\Kalie\2022\20220224										Y
	0.49									>
ort CSV Import MS File	-									

• Sample-protein input tab in Intact is used to import CSV created by Lab Automation workflow

HT Reporting

Intact Triab

Mispaired species

Batch ID Number

- Excel report with peak intensities, mass error, plots also generated
- Data enables project teams to select best lead candidates
- Stacked bar chart view provides visualization for finding trends

Multispecific Antibody Discovery Workflow

ID/Production of parental mAbs

1000+ binders from mice/in vitro disc. Screen by ELISA Eliminate redundant sequences Re-format to hIgG

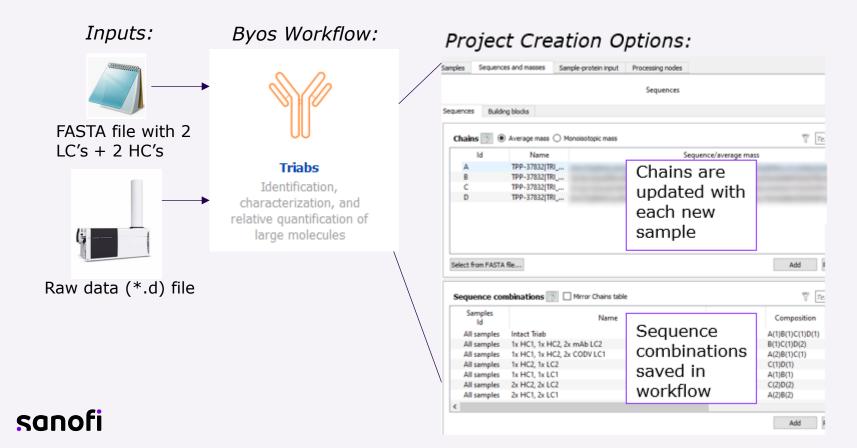
HT Production of multi-specific Abs

~200+ proteins Titer Binding Basic activity assays Purity after proA purification

Intact mass:

Determine % abundance of intact triab vs. mispaired molecules

Mid-scale production of leads


5-10 triabs expressed transiently
 In-depth binding characterization
 Cell-based assays
 Initial in vivo work

Intact mass:


- 1) ID species present after ProA
- 2) Determine fraction pooling
- 3) Final QC

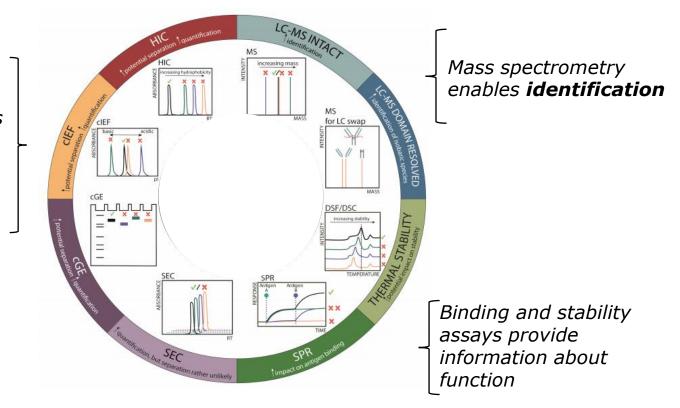
QC of Larger-Scale Triab Productions

Challenge: Importing information for intact + each mispaired molecule

Result Reports for End Users: Excel + PDF

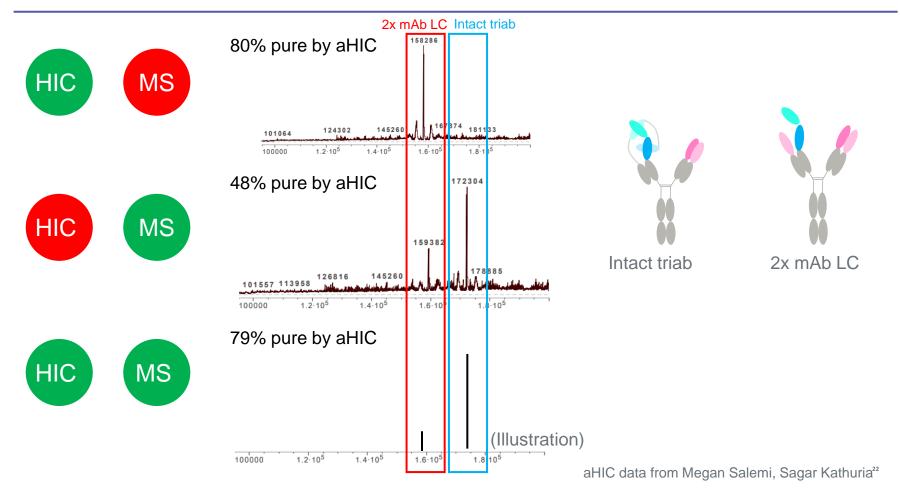
	A	B	C	D	E	F	G	Results need to be uploaded
	Sample name	ID confirmed	Mass	Expected mass	Delta mass from calc.	Delta Mass ppm	Outcome	•
2	PPB-1234	Yes	144500	144495	5	34.6	Passed	 to Genedata Biologics Report export to Excel
	PPB-1235	Yes	49000	48999	1	20.4	Passed	w/custom headers
	PPB-1236	Yes	145097	145090	7	48.2	Not Passed	 Multi-doc report accommodates
	PPB-1237	Yes	145000	144993	7	48.3	Ambiguous	samples analyzed with different
	PPB-1238	Ambiguous	146318	146317	1	6.8	Passed	workflows
	PPB-1239	Yes	23001	22998	3	130.4	Passed	Workhows
	PPB-1240	Yes	201000	200996	4	19.9	Passed	

sanofi

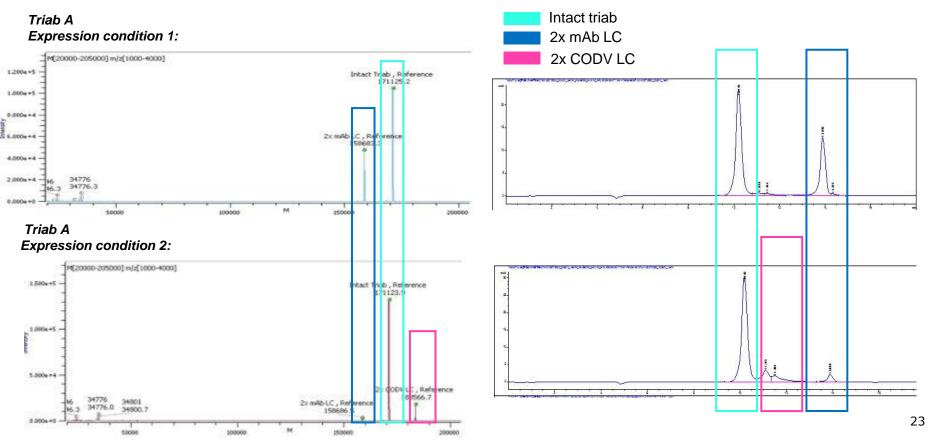

Outline

- Large Molecule Research Group at Sanofi
- Multi-specific antibodies: formats and analytical methods
- Mass spec for high-throughput samples (early-stage screening)
- Mass spec for medium-throughput samples (protein production QC)
- Technology development and ongoing challenges

sanofi


Characterization of Triab CODVs

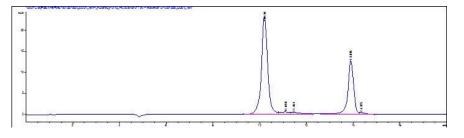
Separation techniques with A280 protein detection enable **quantification**


Ercole Rao, et. al. J. Appl. Bioanalysis 2020, 6.

Candidate Selection Using aHIC with MS

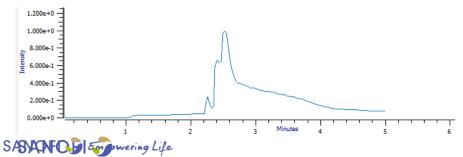
Technology Development with aHIC and MS

- Current setup: Assignment of aHIC peaks is tedious and unreliable
- Test ability of 2D LC-MS (aHIC x RP) to enable identification and quantification in single experiment



Challenge: Many Separation Techniques Do Not Use MScompatible Buffers

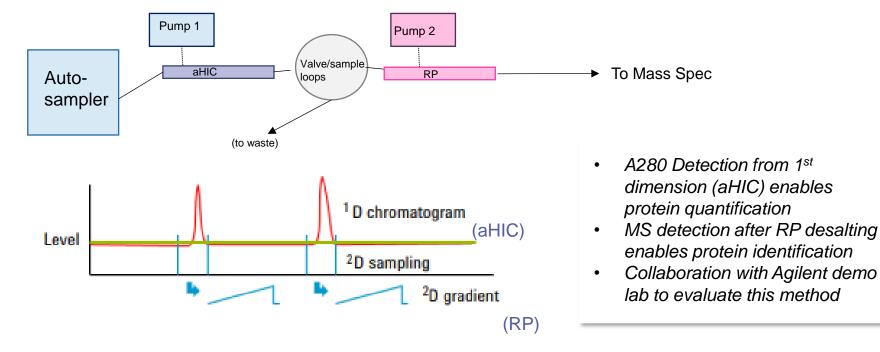
Solution must be volatile, low salt, and conductive to be ESI-MS compatible


Triab aHIC chromatogram:

Mobile phase: 1.5 M ammonium sulfate/25 mM sodium phosphate

Triab reverse-phase LC TIC chromatogram:

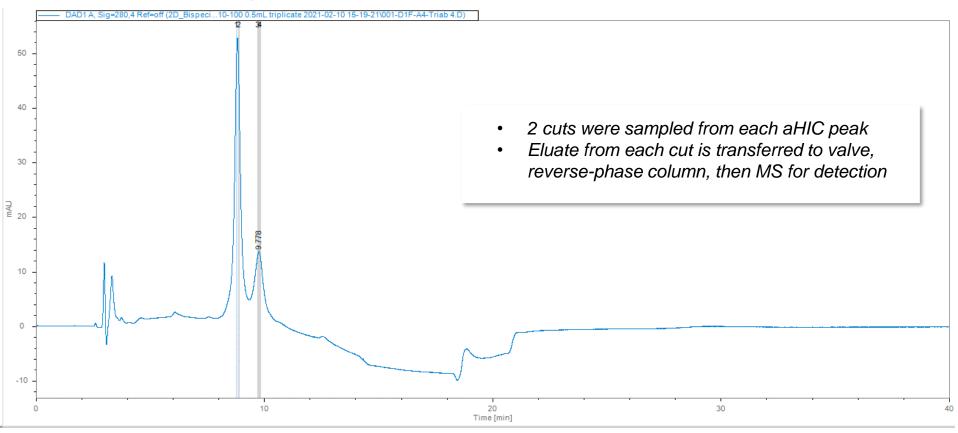
Mobile phase: Water/acetonitrile + 0.1% formic acid



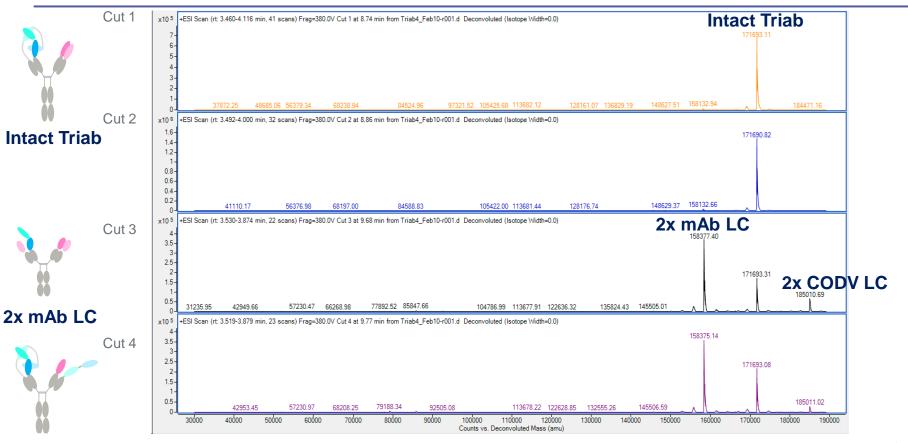
Concentration of common buffer components that reduces the MS signal by 50%:

Туре	Component	SC ₅₀		
	Sodium chloride	1.5 mM		
Salts	Magnesium chloride	25 µm		
	Ammonium sulfate	1.1 mM		
Chaotropes	Guanidinium chloride	38 µm		
Chaotropes	Urea	600 μm		
	SDS	1.7 μm		
Detergents*	Triton X-100	4.2 μm		
	Tween 20	1.3 µm		
	Tris base	91 µm		
Buffers	HEPES	600 µm		
Danolo	PBS	31 µm		
	Antibody formulation	3.4 μm		

One Potential Solution: 2D LC-MS


 1st LC column separates proteins (ie using an aHIC column); 2nd LC column bufferexchanges each peak (ie using a standard reversed-phase column)

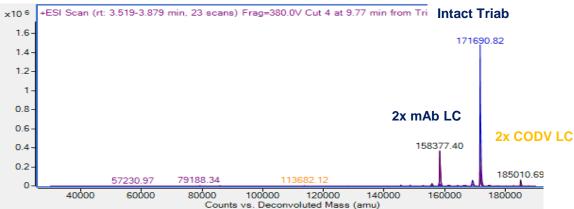
SANOFI 🎝 Empowering Life


- Sent 4 triabs from different projects for analysis
- 1st column: Agilent AdvanceBio HIC column (4.6x100 mm) with 1 M ammonium tartrate, 50 mM sodium phosphate running buffer
- 2nd column: Agilent desalting cartridge & PLRP-S column (2.1x50 mm)
- Mass spec: 6545 XT qTOF
- Evaluate whether this method would enable us to better interpret the aHIC data by assigning peaks using MS
- Determine whether mass peak intensity is a valid estimate for intact triab abundance by comparing to A280 quantification

aHIC Chromatogram from Demo Triab #1

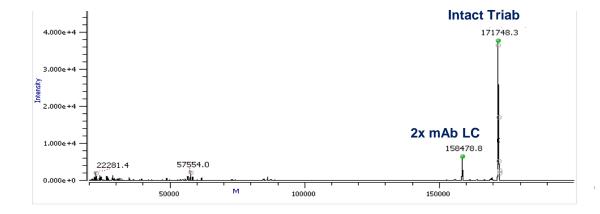
SANOFI 🎝

Deconvoluted MS from Each of 4 Cuts:



2x CODV LC

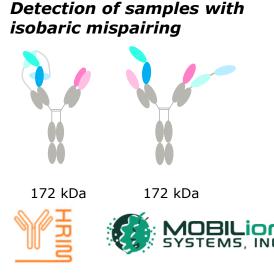
Overlaid 2D Spectra vs Reverse-Phase Spectrum


2D Method enables detection of low-abundance molecules

Overlay of 4 cuts from 2D Method:

Mass Spectrum from Reverse-Phase Method:

SANOFI 🎝



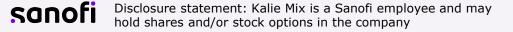
2D HIC Demo Summary

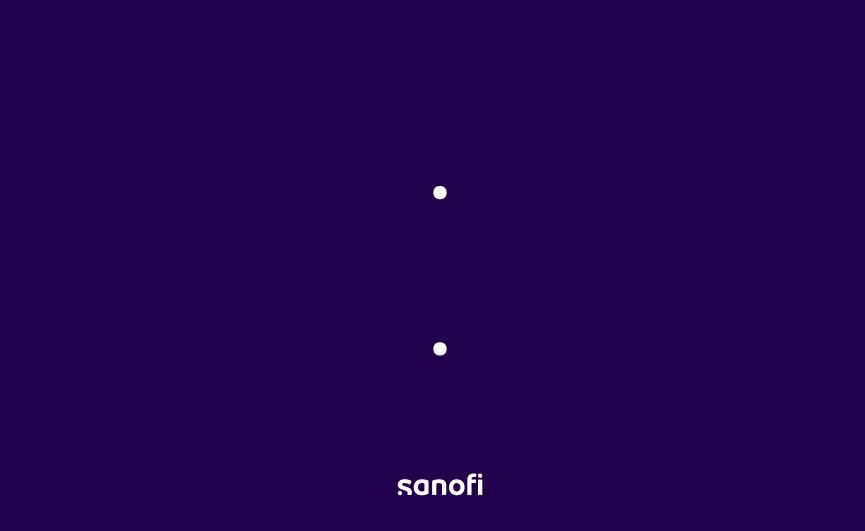
ТРР	%Intact Triab-aHIC A280	%Intact Triab- Mass Peak Intensity
Triab 1	76.5	85.1
Triab 2	75.4	71.2
Triab 3	89.2	90

- Relative quantification of intact triab using aHIC chromatogram integration provided similar results as quantification using the mass peak intensities- helpful for HT screening from PEPP
- Co-elution of mispaired molecules on aHIC complicates A280 quantification; might be improved by using a longer aHIC column
- 2D LC-MS enabled detection of low-abundance molecules that were not detected by RP LC-MS
- For in-process analytics, it would still be a helpful method for ID'ing extra HIC peaks

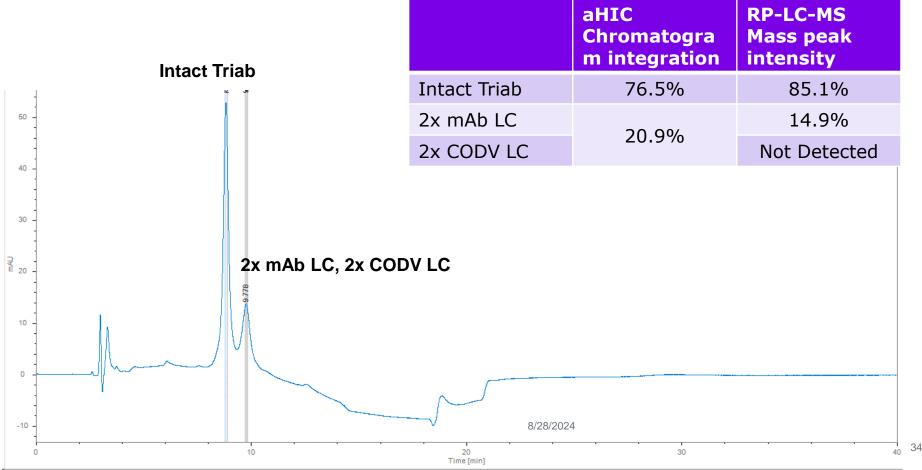
Technology Development for Ongoing Challenges

- Test ability of HRIM to separate mispaired proteins ion mobility
- Additional separation in IM dimension could enable faster data acquisition
- Demo with MOBILion in progress

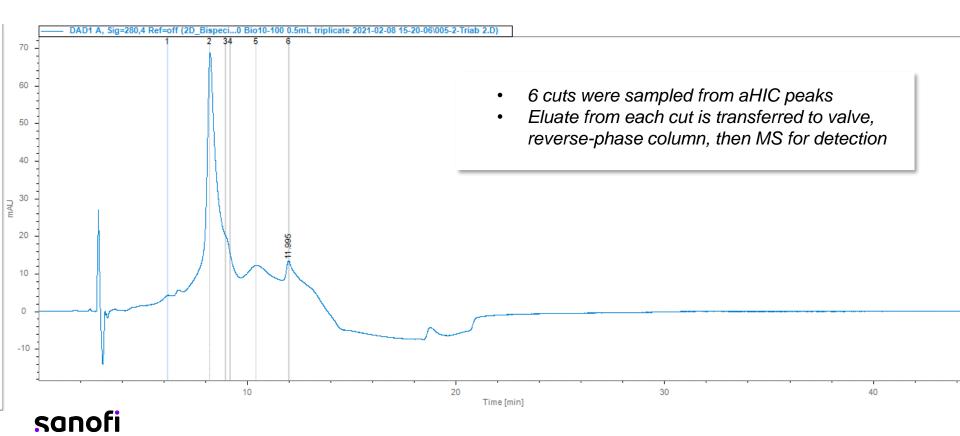

Analysis of new formats where mispaired molecules are close in expected Mw


NOLTHIN,		NOLI V 175 MDR	VILLASO VILLASO VILLASO	BOUTHING REAL	to the	Wolds Trade	NORLAW 175 HDu	NE140
RBH IgG-scPati 200 kDa	Serv-190 200 kDe	Strateg	Strong Strong	RH ING-selfun 200 HDs	Jack vega 200 kDa	tyd-zheify 200 MDs	advetag 200 HJa	Atrets V

- For certain msAb formats, intact & mispaired proteins differ by <5 Da, making peak assignment ambiguous
- Fab digest of large libraries is expensive and time-consuming
- Evaluating library design tool to flag molecules with close Mw's before proteins are produced

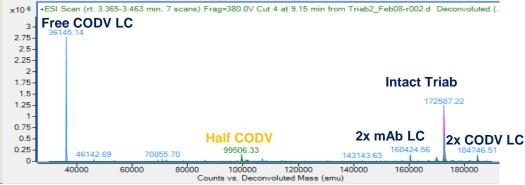

Acknowledgements

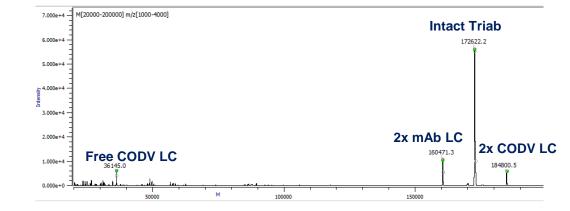
<u>Sanofi-LMR US</u> <u>Sanofi-LMR Frankfurt</u> <u>Sanofi Lab Automation Team</u> <u>Agilent</u> Chris Colangelo Patrick Cronan Rebecca Glaskin Wendi Hale Shashank Jain Nathaniel Reynolds Cody Schwarzer Dan Warren Protein Metrics Mark Bennett Eric Carlson Stephen Cypes Michelle English Jing Li Ilker Sen St John Skilton Lawrie Veale Alec Westley MobilION Brett Peterson Greg Kilby Kelly Moser Tucker Kitchengs Ashli Simone Chuck Cloyd Paul Sakach Craig Carra



Quantitation Using aHIC Chromatogram integration vs. Mass Peak Intensity

aHIC Chromatogram from Demo Triab #2

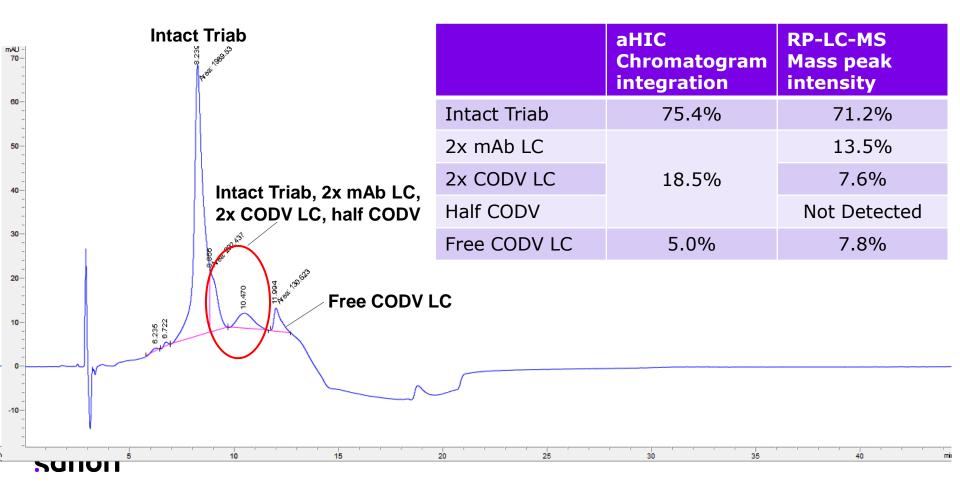

Deconvoluted MS from Each of 6 Cuts



Overlaid 2D Spectra vs Reverse-Phase Spectrum

2D Method enables detection of low-abundance molecules

Overlay of 6 cuts from 2D Method:



Mass Spectrum from Reverse-Phase Method:

sanofi

Quantitation using aHIC Chromatogram Integration vs. Mass Peak Intensity

