

Glycoanalysis of a Glycoengineered VHH-Radioligand Therapy Designed For Improved Biodistribution

David Bush September 2024

YYYYYYYYYYY

RLT platform concept strategy What is **RLT**?

By harnessing the **power of radioactive atoms** and applying it to advanced cancers through radioligand therapy, RLTs are able to deliver radiation to **target cells** anywhere in the body.

References: 1. Jadvar H. Targeted radionuclide therapy: an evolution toward precision cancer treatment. *AJR Am J Roentgenol*. 2017;209(2):277-288. 2. Jurcic JG, Wong JYC, Knox SJ, et al. Targeted radionuclide therapy. In: Tepper JE, Foote RE, Michalski JM, eds. *Gunderson & Tepper's Clinical Radiation Oncology*. 5th ed. Elsevier, Inc; 2021;71(3):209-249.

Exploration of a broad range of formats as RLT vectors

3 RadioLigand Therapy – Highlights from Drug Discovery | Business Use Only

Manufacturing process RLT radioactive products structure

 Jurcic JG, Wong JYC, Knox SJ, et al. Targeted radionuclide therapy. In: Gunderson LL, Tepper JE, eds. Gunderson & Tepper's Clinical Radiation Oncology. 4th ed. Elsevier, Inc.; 2016:423-437.e19.

Manufacturing process RLT radioactive products structure

UNOVARTIS | Reimagining Medicine 5

• Assessment of a VHH-RLT:

- DOTA / linker is conjugated to the C-terminal side of VHH
- N-glycan sequon was added to increase size / lower pl in an attempt to lower undesired off-target tissue accumulation
- VHH expressed in a *HEK293*

Analytical request from production teams:

- 1. Is the produced VHH fully glycosylated?
- 2. Does glycosylation affect the conjugation?
- 3. What is the glycan profile and does it affect biodistribution?

Comparison of Human vs. CHO glycans Rapifluor tag: EX 265/EM 425 nm

Comparison of Human vs. CHO glycans Full LC/MS Ion Map

Peptide Mapping: Materials and Methods

- The tryptic digest of the unconjugated VHH gives a peptide with the N-glycan on the His-Tag (ionizes well)
 - Before Conjugation: ...XXNITXnXHHHHHHHH
 - After Conjugation: ...XXNITXnXXXX*
- Reduce with DTT, alkylate with iodoacetamide, digest with trypsin (1:40 enzyme:VHH).
- MS: Thermo QE-HFX
- LC: Thermo EASY-nLC 1200
- Data analysis: Genedata Expressionist v. 17.0; generic Thermo pepmap workflow

Released Glycan: Materials and Methods

- Followed Waters Glycoworks protocol (PNGase glycan release, RapiFluor labeling, SPE cleanup)
- MS: Waters Synapt-XS
 - Top-8 MS/MS, CE ramp 20-35 eV
 - In-line FLD
- LC: Waters I-class
 - ACQUITY UPLC Glycan BEH Amide, 130 Å, 1.7 $\mu m,$ 2.1 x 150 mm
- Data analysis: Genedata Expressionist v. 17.0; generic Waters released glycan workflow

Data Analysis Strategy:

- Acetylated sialic acid and antenna sulfation are treated as variable glycan modifications)
- 'Humanize' our curated CHO database of N-glycans to include common human glycan moieties

Mass Spectrum, 4 acidic-moiety glycan range

Lu:DOTA conjugated peptide does not ionize well...

Acid moieties (NANA, NGNA, Sulfation): 0, 1, 2, 3, 4, 5

Pre-conjugation (+His Tag)

Post-conjugation (-His Tag, +Lu:DOTA)

Released Glycan Profiles Rapifluor tag: EX 265/EM 425 nm Day 1

Sample prep by Andrew robot

Released Glycan Profiles Rapifluor tag: EX 265/EM 425 nm Day 2

Manual Sample Prep.

Modified Bi-antennary Glycans Modified: FA2G2S2

Fagmentation confirmation of NGNA FA2G2S1Sg1 / FA2G2S2

Fa2g2s2_OAc1 / FA2g2s2

Fragmentation Confirmation of Antenna-Fuc FA2F1G2S2/FA2G2S2

Fragmentation Confirmation of Sulfated-Gal / GalNAc FA2GalNAc2Su1

24 Business Use Only

UNOVARTIS | Reimagining Medicine

Fragmentation Confirmation of Sulfated-Gal / GalNAc

Distilling Information from Results

de	Modifications	Mod. Locations	Glycans	Calc. Mass	Delta [ppm]	RT	Adduct States	Length	Consolidated Score	Original Scores	Intensity
	. ASF154	[N119]	ŦK≣	7804. 1343	3.4736924	23.36375	M+7H+ : M+6	32	93.6945	[111.019, 76	4.520057969
	. ASF 154	[N119]	+-	7804.1343	0.1256639	21.921061	M+6H+	32	70.72	[70.72]	8.2629978E
	. ASF154	[N119]	T	7804. 1343	3.227716	22.013303	M+5H+	32			3.875556E
	. A5F1S3_S1	[N119]		7592.9957	2.6723513	23.232526	M+6H+:M+5H+	32	63.04	[63.04]	6.3989683E
	. ASF1S3	[N119]	T	7513.0389	3.8499202	22.050718	M+7H+ : M+6	32	72.0225	[106.97, 37.0	3.026572E
	. ASF152_51	[N119]		7301.9003	9.1690308	24.525638	M+6H+:M+5H+	32	41.05	[41.05]	2.7315498E
	. ASF1S2	[N119]		7221.9435	1.0987869	20.883145	M+7H* : M+6H*	32	103.375	[103.375]	1.611882E
	. ASF1S1, ASF2S1_S1	[1119]	· _	7010.8049	9.8827296	23.067181	M+6H*	32			1.412129E

- Tables with 100's of glycan ID's and quantities do not facilitate decision making
- Mapping glycan attributes to annotations via a generic glycan name provides information that can be summarized and reported to non-experts...

Glycan	Core Fuc	Antenna (High Estimate)	Antena (low estimate)	Antenna Fuc	Sialic Acid	NANA	NGNA	GalNAc	 Intensity
A3G3	0	3	2	0	0	0	0	0	2.3215
A3G3S1	0	3	2	0	1	1	0	0	3.6121
A3G3S2	0	3	2	0	2	2	0	0	2.8231
A3G3S3	0	3	3	0	3	3	0	0	1.5918
FA3G3	1	3	2	0	0	0	0	0	5.2351
FA3G3S1	1	3	2	0	1	1	0	0	6.2354
FA3G3S2	1	3	2	0	2	2	0	0	8.7354
FA3G3S3	1	3	3	0	3	3	0	0	8.9542
FA3G3Sg1	1	3	2	0	1	0	1	0	1.3852
FA3G3S1Sg1	1	3	2	0	2	1	1	0	1.2719
FA3F1G3S1	1	3	2	1	1	1	0	0	2.3245

(Next slide)

Example Reports

Example 1: Nearly indistinguishable glycan profiles of the Histagged VHH and the conjugated (Lu:DOTA ligated) samples

# of Anteanna	HIS Tag Rep1	HIS Tag Rep2	LuDOTA Rep1	LuDOTA_Rep2
0	1.0	1.0	0.8	0.9
1	1.3	1.4	1.2	1.4
2	58.4	59.0	57.0	56.6
3	31.4	31.3	33.1	33.0
4	8.0	7.3	7.9	8.2
# of Eucosylation				
	3.3	3.1	3.3	3.1
1	70.0	70.1	79.7	79.6
2	17.0	17.2	17.7	17.7
2	0.2	0.2	0.2	0.2
3	0.3	0.2	0.3	0.3
Sulf	3.4	3.3	3.5	3.4
O-acetyl	0.5	0.5	0.5	0.5
Uncapped Gal/GalNAc,	high estimate			
0	2.1	2.2	2.1	2.2
1	26.0	26.2	27.6	28.0
2	50.2	49.9	48.0	47.7
3	20.0	20.1	20.5	20.3
4	1.6	1.6	1.8	1.9
High-mannose / hybrid	0.5	0.5	0.5	0.5
# NANA/NGNA				
0	62.5	62.7	59.8	59.5
1	27.6	27.6	30.0	30.1
2	7.5	7.6	8.4	8.6
3	1.7	1.5	1.4	1.4
4	0.7	0.6	0.4	0.4

Example 2: Comparing Fc glycan-profiles from different glycoengineered cell lines

Protein ID	Production Conditions	High Mannose [%]	Terminating Gal [%]	Afucosylation [%]	Sialylation [%]
Prot1	А	1	30	4	0
Prot2	А	1	28	9	0
Prot3	А	0	37	1	0
Prot4	А	0	25	8	0
Prot5	А	2	24	6	0
Prot6	А	0	24	4	0
Prot2	В	1	22	100	0
Prot3	В	0	31	100	0
Prot4	В	0	25	100	0
Prot5	В	1	20	100	0
Prot6	В	0	19	100	0
Prot2	С	4	26	4	46
Prot4	С	0	9	0	78
Prot6	С	0	21	2	61

Conclusions

- Glycopeptide mapping and released glycan analysis of glycoengineered VHH's provided useful insights to support the production and conjugation teams
 - Peptide mapping was used primarily for determining aglycan levels
 - Released glycans showed that glycoengineering had no detectable effect on conjugation
 - Although human glycans are too complex for a 1D LC experiment to resolve chromatographically for fluorescence quantitation, differences in relative MS signal between samples can provide useful insights
- Impacts of glycosylation on VHH biodistribution
 - With glycosylation, the ratio of VHH at tumor vs undesirable locations increased
 - However, accumulation in the liver, while not a toxicity concern, was increased
 - This is likely due to glycans with exposed Gal and GalNAc binding to ASGPR on the surface of hepatocytes
 - Judicious selection of expression system and culture conditions could further improve biodistribution
- Misc. conclusions
 - Well curated human and CHO glycan databases have since shown to be useful investments
 - Mapping glycan attributes to quantified glycans is a quick way provide actionable summaries of glycan profiles

Acknowledgements

- Jenifer Kaplan
- Michael McKinnon
- Eliza Livingston
- Yanyun Liu
- Yang Yang
- Paul Wassmann
- Francis Bitsch
- Patrick Schindler
- Hayretin Yumerefendi
- Daniela Miranda
- Rainer Kneuer

YXXYXXXXX TTTTTTTT XXXXXXXXXXX YYYYYYYYY XXXXXXXXXXX YYYYYYYYY **XXXXXXXXXX YXXYXXXXX** YYXYYXYYY **YXXYXXXXX** \mathbf{X} **XXXXXXXXXX TTTTTTTT XXXXXXXXXX TTTTTTTT XXXXXXXXXX TTTTTTTT YXXYXXXXX** YYYYYYYYY **XXXXXXXXXX** \mathbf{x} **XXXXXXXXXX TTTTTTT** TATYXXXYYY YYYYYYYYY **YXXYXXXXX XXXXXXXXXX XXXXXXXXXX** \mathbf{x} LYYLYYLYL **XXXXXXXXXX XXXXXXXXXX** YYYYYYYYY **XXXXXXXXXX** YYXYYXYYY **YXXXXXXXX** YYXYYXYYY **YXXYXXXXX** \mathbf{X} **XXXXXXXXXX** \mathbf{x} XXXXXXXXXXX YYYYYYYYY **XXXXXXXXXX** YYYYYYYYY

Backups

Glycan Structure: Key Differences Between CHO and Human

31

Comparison of Human vs. CHO glycans Full LC/MS Ion Map

Glycan Structure Refresher:

Inten

Glycan Structure Refresher:

mten

Comparison of Human vs. CHO glycans Large sialylated species

Comparison of Human vs. CHO glycans Large sialylated species

Glycan Structure Refresher

YXXYXXXXX XXXXXXXXXX YXXYXXXXX YYYYYYYYY **XXXXXXXXXX** YYXYXXYYY **XXXXXXXXXX YXXXXXXXX** \mathbf{X} **YXXYXXXXX** YYYYYYYYY **XXXXXXXXXX** YYXYYXYYY **XXXXXXXXXX TTTTTTTT XXXXXXXXXX TTTTTTTT YXXYXXXXX** YYYYYYYYY **XXXXXXXXXX** \mathbf{x} **XXXXXXXXXX TTTTTTTT** TAXXXXXXXXX YYYYYYYYY **XXXXXXXXXX XXXXXXXXXX**

Glycan Structure Refresher

FA2G2S2

NOVARTIS | Reimagining Medicine

Harvey DJ et. Al. 2021 Anal. Bioanal. Chem. 413, 7229

Do KY, Do SI, Cummings RD 1997 Glycobiol. 7, 183

55 Business Use Only

Glycan Structure Refresher: Etc.

Glycan Structure Refresher: Etc.

