Characterising Viral Vectors for Gene Therapy using Mass Spectrometry on Different Levels

Josh Smith¹, Corentin Beaumal¹, Felipe Guapo¹, Lisa Strasser¹, Florian Füssl¹, Silvia Millán-Martín¹, Sara Carillo¹, Aaron Richardson¹, Colin Clarke^{1,2} & Jonathan Bones^{1,2}

¹NIBRT, Foster Avenue, Mount Merrion, Blackrock, Co. Dublin, A94 X099, Ireland. ²School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, Dublin 4, D04 V1W8, Ireland.

Characterisation of AAV using Multiple Levels of Analysis

Capsid Fill State Assessment Using Native MS

Cluster Areas Correlate With Abundance of Capsid Species

- pH gradient anion exchange separation of full and empty capsids using Thermo Scientific ProPac 3R AEX column.
- Gradient specifically designed to be generic for different serotypes and mass spectrometry compatible.
- pH gradients enable focusing effect, elution occurs when gradient pH = analyte pl, results in sharp chromatographic peaks.

Coupling with Native MS Detection

- pH gradient anion exchanged coupled directly to Thermo Scientific Q Exactive UHMR mass spectrometer for confirmation of capsid fill state species identification based on m/z.
- Assuming similar charge, earlier eluting peak contains heavier species explained by the presence of cargo DNA, additional mass of ~0.8 MDa corresponding to CMV-GFP.

Coupling CDMS with Front End F/E AEX Separation

Viral Protein Separation using LC-MS

VP separation using hydrophilic interaction LC using an acetonitrile water gradient containing difluoro acetic acid as a mobile phase modifier.

Fluorescence and MS detection using Thermo Scientific Orbitrap Exploris 240 MS with Biopharma Option.

Method Translation into Rapid Identity Test

Report Generation

Method Validation (HEK Derived AAV)

RP Separation for Detection of Deamidation Events

While the HILIC separation of VP's works well, for modifications such as deamidation events, HILIC does not have the necessary selectivity. Reversed-phase separation on C4 enables efficient separation of deamidated forms of the viral proteins.

Viral Protein Separation using MCE-MS

Broad Applicability of ZipChip Platform

Detected VP Proteoforms and Fragments

VPs with additional PTMs C-Term Fragments

<u>/Ps</u>	Potential Causes of Fragments
⊢	Baculoviral cathepsin

- Immune response
- Acidic conditions

Unexpected \

VP3 M203-VP3

Start of AAV Sequence

►VP1 **AADGYLPDWLEDTLSEGIRQWWKLKPGPPPPKPAERHKDDSRGLVLPGY KYLGPFNGLDKGEPVNEADAAALEHDKAYDRQLDSGDNPYLKYNHADAEF** 50 99 -> VP2 QERLKEDTSFGGNLGRAVFQAKKRVLEPLGLVEEPVKTAPGKKRPVEHSP 100 149 VEPDSSSGTGKAGQQPARKRLNFGQTGDADSVPDPQPLGQPPAAPSGLGT 150 -> VP3 -► A211-VP3 199 NTMATGSGAPMADNNEGADGVGNSSGNWHCDSTWMGDRVITTSTRTWALP 200 203 249 211 TYNNHLYKQISSQSGASNDNHYFGYSTPWGYFDFNRFHCHFSPRDWQRLI 250 299

					V	<u> </u>	<u>3</u>		/(21	<u>ic</u>	n	<u>t (</u>	G	e	n	er	at	ic	Dr]							
Serotypes	N-terminal region					DP sequence DG sequence							DP	se	- AAV1													
		203	1							211				590	591				626	627			656	657	7		- AAV/2	
AAV1		М	А	S	G	G	G	А	Ρ	М	А		Т	D	Ρ	А		т	D	G	н	 Α	Ν	Ρ	Ρ			
AAV2		М	Α	т	G	s	G	А	Ρ	М	А		R	Q	А	А		т	D	G	н	 Α	Ν	Ρ	S		AAV3	
AAV3		Μ	A	s	G	G	G	А	Ρ	М	А		Т	А	Ρ	т		Т	D	G	н	 Α	Ν	Ρ	Ρ		AAV6	
AAV6		М	А	s	G	G	G	А	Ρ	М	А		Т	D	Ρ	А		Т	D	G	н	 А	Ν	Ρ	Ρ		AAV8	
AAV8		М	Α	А	G	G	G	А	Ρ	М	А		т	А	Ρ	Q		т	D	G	Ν	 А	D	P	Ρ		AAV10	
AAV10		Μ	A	А	G	G	G	А	Ρ	М	А		т	G	Ρ	Т		т	D	G	Ν	 А	D	Ρ	Ρ		AAV/rh10	
AAVrh10		М	Α	А	G	G	G	А	Ρ	М	А		А	А	Ρ	Т		т	D	G	Ν	 Α	D	Ρ	Ρ			
AAV4		Μ	R	А	А	А	G	G	А	А	v		Ν	L	Ρ	т		т	D	G	н	 А	Ν	Ρ	А		AAV4	
AAV11		М	R	A	A	Ρ	G	G	Ν	А	V		т	А	Р	Т		А	D	G	н	 А	Ν	Ρ	А		AAV11	
AAV12		М	R	A	A	Ρ	G	G	Ν	А	v		т	А	Р	н		т	D	G	н	 А	Ν	Ρ	Ν		AAV12	
AAV5		М	s	А	G	G	G	G	Ρ	L	G		т	А	Р	А		т	G	А	н	 G	Ν	I	-		AAV5	
AAV9		М	А	s	G	G	G	А	Ρ	V	А		А	Q	А	Q		т	D	G	Ν	 А	D	Ρ	Ρ		AA\/9	
AAV7		۷	А	А	G	G	G	А	Ρ	М	А		т	А	А	Q		т	D	G	Ν	 А	Ν	Ρ	Ρ		_ AA\/7	

Adapted from Figure 5a of *Oyama et al. (2021)*

https://www.liebertpub.com/doi/10.1089/hum.2021.009

Adapted from Figure S4a of Oyama et al. (2021)

https://www.liebertpub.com/doi/10.1089/hum.2021.009

'Leakv" Codon Scannina

Influence of Modifications on VP Migration

erotype	Amino Acid Sequence	Viral Protein	Capsids (Empty/Full)	Relative Abundance (%)	Migration Time (min)	Theoretical Net Charge at pH 2.4	Theoretical Charge to Mass ratio
		(Ac)VP1 + 2xP	Empty Full	0.13 0.08	3.336 3.311	+73.996	9.04 × 10 ⁻⁴
AAV8	A2(Ac)-L738	(Ac)VP1 + 1xP	Empty Full	0.62 0.41	3.322 3.291	+74.937	9.17 × 10 ⁻⁴
		(Ac)VP1	Empty Full	0.42 0.21	3.310 3.278	+75.878	9.29 × 10 ⁻⁴
	V132-L738	V132-VP1 + 1xP Fragment	Empty Full	0.11 0.07	3.370 3.339	+59.268	8.80×10 ⁻⁴
	A120 1729	VP2 + 1xP	Empty Full	1.27 0.89	3.374 3.332	+58.286	8.75 × 10 ⁻⁴
	A139-L/38	VP2	Empty Full	0.57 0.38	3.338 3.299	+59.226	8.90 × 10 ⁻⁴
		(Ac)VP3 + 1xP	Empty Full	6.64 6.85	3.546 3.511	+48.375	8.08 × 10 ⁻⁴
	A205(Ac)-L738	(Ac)VP3	Empty Full	100.00 100.00	3.521 3.485	+49.316	$8.25\times10^{\text{-4}}$
	L	VP3	Empty Full	49.75 45.29	3.468 3.431	+50.316	8.42 × 10 ⁻⁴
	G209-L738	G208-VP3 Fragment	Empty Full	3.40 2.61	3.441 3.402	+50.316	8.46 × 10-4
	A213(Ac)-L738	(Ac)VP3 Variant	Empty Full	4.46 4.94	3.484 3.450	+49.316	8.33 × 10 ⁻⁴
erotype	Amino Acid	Viral Protein	Capsids (Empty/Eull)	Relative	Migration	Theoretical Net	Theoretical Charge
	A2(Ac)-L736	(Ac)VP1	Empty Full	0.11 0.02	3.328 3.335	+76.860	9.45 × 10-4
	R116-L736	R116-VP1 Fragment 1	Empty Full	0.22	3.319	+64.161	9.33×10-4
	1131-1736	L131-VP1	Empty	0.20	3.383	.60 170	
	1151-1/50	Fragment 2	Full	0.04	3.387	+00.170	8.97 × 10-4
		Fragment 2 VP2 + 1xP	Full Empty Full	0.04 0.03	3.387 - 3.398	(min)Charge at pH 2.4to Mass ratio336 3311 $+73.996$ 9.04×10^4 322 291 $+74.937$ 9.17×10^4 310 370 339 $+59.268$ 8.80×10^4 374 322 $+59.268$ 8.80×10^4 374 322 $+59.268$ 8.90×10^4 374 329 $+59.268$ 8.08×10^4 546 511 $+49.316$ 8.25×10^4 548 521 4485 $+59.268$ 8.08×10^4 546 511 $+49.316$ 8.42×10^4 443 450 $+50.316$ 8.46×10^4 444 450 $+50.316$ 8.46×10^4 441 450 $+50.316$ 8.45×10^4 443 450 $+64.161$ 9.33×10^4 328 355 $+76.860$ 9.45×10^4 339 597 605 $+55.247$ 8.79×10^4 389 390 $+59.188$ 8.94×10^4 389 390 $+59.188$ 8.94×10^4 389 390 $+55.2266$ 8.33×10^4 389 597 605 $+52.286$ 8.74×10^4 389 593 $+50.345$ 8.42×10^4 498 593 533 $+50.345$ 8.42×10^4 498 593 593 $+42.363$ 8.39×10^4 598 598 598 593 598 593 598 593 593 593 593 594 593 594 -7.80×10^4 498 599 598 599 598 599 598 599 598 599 599 598 599 599 599 599 599 599 599 599 599 599 599 599 591 591 591 591 591 591 59	
	A139-L736	Fragment 2 VP2 + 1xP VP2	Full Empty Full Empty Full	0.04 - 0.03 0.67 0.33	3.387 - 3.398 3.389 3.390	+58.247	8.97 × 10 ⁻⁴ 8.79 × 10 ⁻⁴ 8.94 × 10 ⁻⁴
	A139-L736	Fragment 2 VP2 + 1xP VP2 F173-VP2 Fragment	Full Empty Full Empty Full Empty Full	0.04 0.03 0.67 0.33 0.68 0.23	3.387 3.398 3.389 3.390 3.597 3.605	+58.247 +59.188 +52.226	8.97 × 10 ⁴ 8.79 × 10 ⁴ 8.94 × 10 ⁴ 8.33 × 10 ⁴
ΔΔV9	A139-L736 F173-L736 M203-L736	Fragment 2 VP2 + 1xP VP2 F173-VP2 Fragment M203-VP3	Full Empty Full Empty Full Empty Full Empty Full	0.04 0.03 0.67 0.33 0.68 0.23 0.43 0.41	3.387 3.398 3.399 3.390 3.597 3.605 3.420 3.418	+58.247 +59.188 +52.226 +52.286	8.97 × 10 ⁴ 8.79 × 10 ⁴ 8.94 × 10 ⁴ 8.33 × 10 ⁴ 8.74 × 10 ⁴
AAV9	A139-L736 F173-L736 M203-L736 A204(Ac)-L736	Fragment 2 VP2 + 1xP VP2 F173-VP2 Fragment M203-VP3 (Ac)VP3 + 1xP	Full Empty Full Empty Full Empty Full Empty Full Empty Full	0.04 0.03 0.67 0.33 0.68 0.23 0.43 0.41 7.68 9.79	3.387 3.398 3.399 3.390 3.597 3.605 3.420 3.418 3.533 3.531	+58.247 +59.188 +52.226 +52.286 +50.345	8.97×10^{4} 8.79×10^{4} 8.94×10^{4} 8.33×10^{4} 8.74×10^{4} 8.42×10^{4}
4AV9	A139-L736 F173-L736 M203-L736 A204(Ac)-L736	Fragment 2 VP2 + 1xP VP2 F173-VP2 Fragment M203-VP3 (Ac)VP3 + 1xP (Ac)VP3	Full Empty Full Empty Full Empty Full Empty Full Empty Full Empty Full		3.387 3.398 3.390 3.597 3.605 3.420 3.418 3.533 3.531 3.498 3.492	+58.247 +59.188 +52.226 +52.286 +50.345 +51.286	8.97×10^{4} 8.79×10^{4} 8.94×10^{4} 8.33×10^{4} 8.74×10^{4} 8.42×10^{4} 8.59×10^{4}
AAV9	A139-L736 F173-L736 M203-L736 A204(Ac)-L736 A204(Ac)-D657	Fragment 2 VP2 + 1xP VP2 F173-VP2 Fragment M203-VP3 (Ac)VP3 + 1xP (Ac)VP3 (Ac)VP3-D657 Fragment	Full Empty Full Empty Full Empty Full Empty Full Empty Full Empty Full	0.04 0.03 0.67 0.33 0.68 0.23 0.43 0.41 7.68 9.79 100.00 100.00 0.09 0.11	3.387 3.398 3.389 3.597 3.605 3.420 3.418 3.533 3.531 3.498 3.492 3.588 3.593	+58.247 +59.188 +52.226 +52.286 +50.345 +51.286 +42.363	8.97×10^{4} 8.79×10^{4} 8.94×10^{4} 8.33×10^{4} 8.74×10^{4} 8.42×10^{4} 8.59×10^{4} 8.39×10^{4}
44V9	A139-L736 F173-L736 M203-L736 A204(Ac)-L736 A204(Ac)-D657 A204(Ac)-S538	Fragment 2 VP2 + 1xP VP2 F173-VP2 Fragment M203-VP3 (Ac)VP3 + 1xP (Ac)VP3 (Ac)VP3-D657 Fragment (Ac)VP3-S538 Fragment	Full Empty Full Empty Full Empty Full Empty Full Empty Full Empty Full	0.04 0.03 0.67 0.33 0.68 0.23 0.43 0.41 7.68 9.79 100.00 100.00 0.09 0.11 0.37 0.42	3.387 3.398 3.390 3.597 3.605 3.420 3.418 3.533 3.531 3.498 3.492 3.588 3.593 3.645 3.645 3.647	+58.247 +59.188 +52.226 +52.286 +50.345 +51.286 +42.363 +30.547	8.97×10^{4} 8.79×10^{4} 8.94×10^{4} 8.33×10^{4} 8.74×10^{4} 8.42×10^{4} 8.59×10^{4} 8.39×10^{4} 8.13×10^{4}
AAV9	A139-L736 F173-L736 M203-L736 A204(Ac)-L736 A204(Ac)-D657 A204(Ac)-S538 A204(Ac)-M518	Fragment 2 VP2 + 1xP VP2 F173-VP2 Fragment M203-VP3 (Ac)VP3 + 1xP (Ac)VP3 + 1xP (Ac)VP3 - 5537 Fragment (Ac)VP3-N5538 Fragment (Ac)VP3-M518 Fragment	Full Empty Full Empty Full Empty Full Empty Full Empty Full Empty Full Empty Full	0.04 0.03 0.67 0.33 0.68 0.23 0.43 0.41 7.68 9.79 100.00 100.00 0.09 0.11 0.37 0.42 0.13 0.15	3.387 3.398 3.389 3.390 3.597 3.605 3.420 3.418 3.533 3.531 3.498 3.492 3.588 3.492 3.588 3.492 3.588 3.492 3.588 3.492 3.588 3.492 3.588 3.593 3.645 3.647 3.750	+58.247 +59.188 +52.226 +52.286 +50.345 +51.286 +42.363 +30.547 +27.594	8.97×10^{4} 8.79×10^{4} 8.94×10^{4} 8.33×10^{4} 8.74×10^{4} 8.42×10^{4} 8.59×10^{4} 8.39×10^{4} 8.13×10^{4} 7.80×10^{4}
ΑΑ ν 9	A139-L736 F173-L736 M203-L736 A204(Ac)-L736 A204(Ac)-D657 A204(Ac)-S538 A204(Ac)-M518 A204(Ac)-N512	Fragment 2 VP2 + 1xP VP2 F173-VP2 Fragment M203-VP3 (Ac)VP3 + 1xP (Ac)VP3 + 1xP (Ac)VP3-M518 Fragment (Ac)VP3-M518 Fragment (Ac)VP3-N512 Fragment	Full Empty Full Empty Full Empty Full Empty Full Empty Full Empty Full Empty Full Empty Full Empty Full Empty Full	0.04 0.03 0.67 0.33 0.68 0.23 0.41 7.68 9.79 100.00 100.00 0.09 0.11 0.37 0.42 0.13 0.15 0.10 0.09	3.387 3.398 3.399 3.390 3.605 3.420 3.418 3.533 3.531 3.498 3.492 3.588 3.593 3.645 3.647 3.745 3.750 3.789 3.793	+58.247 +59.188 +52.226 +52.286 +50.345 +51.286 +42.363 +30.547 +27.594 +26.589	8.97×10^{4} 8.79×10^{4} 8.79×10^{4} 8.33×10^{4} 8.74×10^{4} 8.42×10^{4} 8.59×10^{4} 8.39×10^{4} 8.13×10^{4} 7.80×10^{4} 7.66×10^{4}

ProtPi (<u>https://www.protpi.ch/Calculator/ProteinTool</u>) used to calculate Theoretical Net Charge of VPs at pH 2.4 (pH of BGE)

Top-Down MS/MS Sequencing of Intact VP's – Focus on VP3

- Sequence degeneracy of VP's complicates annotation of PTMs.
- Rather than use peptide mapping, top-down MS/MS sequencing on Orbitrap Eclipse was investigated using multiple ion activation strategies.
- EThcD fragmentation resulted in highest individual coverage.
- Combining all ion activation strategies, sequence coverage resulted in nice N- and C-terminal fragmentation.

Combined Top-Down MS/MS of VP3 on Orbitrap Eclipse

Top-down MS/MS Data Sequence Map

Data from barcode plot mapped on to the sequence of VP3 demonstrating nice N- and C-terminal fragmentation.

G G]G]A]P V]A]D]N]N E G A D G]V G S S S G N]W] 25 S Q W L G D R V I T T S T R]T]W]A]L]P]T]Y]N] 50 26 H C D 51 N|H|L Y|K|Q|I|S|N|S|T|S|G|G|S|S|N|D|N|A|Y|F G Y S| 75 76 T]P]W]G Y F]D F N R F]H C H]F S]P R]D]W]Q]R]L I]N 100 101 NNW G FR PKRLNFK LFN IO VK E V T D N125 126 N G V K T I ANN LITS TIVQVFTDDSDY QLP 150 151 Y V L G S A H E G C L]P]P F]P A D V]F M]I]P Q Y G 175 176 Y L T L N D G S Q A V G R S S F Y C L E Y F ΡS **O** 200 201 M L R T G N N F Q F S Y E F E N V P F H SS Y A H 225 Q S L D R L M N P L I D Q Y L Y Y L S K T I N G 250 226 **S** 251 S G Q I N Q Q T L K F S V A G P S N M A V Q G R N Y 275 276 I P G P S Y R Q Q R V S T T V T Q N N N S ELF ALW 300 301 P G A S S W A L N G R N S L M N P G P A M A S H K 325 326 E G E D R F F P L S G S L I F G K Q G T G R D N V 350 351 D A D K V M I T N E E E I K T T N P V A T E S Y G 375 376 Q V A T N H Q S A QLALQLALQLTLGLWLVLQLNLQLGLILLP 400 401 GLM V WLQLDLR D V Y L QLG P I W ALKLI PLH TLD GLN 425 426 F H PLSLPLLM GLGLFLGLMLKLH P PLP QLI L ILKLNLT P 450 451 V PLALDLPLPLTLALFINLKLDLKLLNSFIILTLQLYSTGLQ 475 476 V S VLE ILE WLE LLQ KLEINLSKRWIN PLEIIQLYLTIS 500 501 N Y Y K S N N V E F A V N T E G V Y S E P R P I G 525 526 TRYLTRNLC

Reproducibility of fragmentation behaviour investigated using three different preparations of HEK293 derived AAV9 and replicate instrumental analysis.

Reproducibility of fragmentation was found to be high resulting in the same pattern each time for biological and technical replicate measurements

Top-Down MS/MS Facilitated Site Specific PTM Annotation

N-term Ac – 40%

N A S G G G A P V A D N E G A D G V G S S S G N W 25 26 H C D S O W L G D R V I T T S T RITIWIALLIPITIYIN 50 51 NIHIL YIKIOIIISINISITISIGIGISISINIDINIAIYIF G Y SI 75 76 T]P]W]G Y F]D F N R F]H C H]F S]P R]D]W]Q]R]L I]N 100 101 NNWGFRPKRLNFKLFNIQVKEVTDN125 126 N G V K T I]A]N]N]L]T]S T]V]O]V]F]T]D]S]D]Y O]L]P 150 151 Y V L G S A H E G C LIPIP FIP A D VIF MIIP O Y G 175 176 Y L T L N D G S Q A V G R S S F Y C L E Y F P S Q 200 201 M L R T G N N F Q F S Y E F E N V P F H S S Y A H 225 226 S Q S L D R L M N P L I D Q Y L Y Y L S K T I N G 250 2511S G OIN O O T L K F S V A G P S N M A V O G R N Y 275 276 I P G P S Y R O O R V S T T V T O N N N S E F A W 300 301 P G A S S W A L N G R N S L M N P G P A M A S H K 325 326 E G E D R F F P L S G S L I F G K Q G T G R D N V 350 351 D A D K V M I T N E E E I K T T N P V A T E S Y G 375 376 Q V A T N H Q S A QLALQLALQLTLGLWLVLQLNLQLGLILLP 400 401 GLM V WLQLDLR D V Y L QLG P I W ALKLI PLH TLD GLN 425 426 F H PLSLPLLM GLGLFLGLMLKLH P PLP QLI L ILKLNLT P 450 451 V PLALDLPLPLTLALFINKLDLKLLNLSLFLITLQLYLSLTLGLQ 475 476LV S VLE ILE WLE LLO KLEINSKIRIWIN PLEIIOLYITIS 500 501 NIYIYIKISININ VIELFIAUVINITIELG VIY SIELPIRIPIIG 525 526 TRYLTRNL C

K108 Ac - 31%

K504 Ac – 11%

N ASGGGAPVADNNEGADGVGSSSGNW 28 26 H C D S Q W L G D R V I T T S T R T W A L P T Y N 50 51 N H L Y K Q I S N S T S G G S S N D N A Y F G Y S 75 76 T P W G Y F D F N R F H C H F S P R D W O R L I N 100 101 N N W G F R P K R L N F K L F N I O V K E V T D N 125 126 N G V K T I A N N L T S T V O V F T D S D Y O L P 150 151 Y V L G S A H E G C L P P F P A D V F M I P Q Y G 175 176 Y L T L N D G S Q A V G R S S F Y C L E Y F P S Q 200 201 M L R T G N N F Q F S Y E F E N V P F H S S Y A H 225 226 S Q S L D R L M N P L I D Q Y L Y Y L S K T I N G 250 251 S G Q N Q Q T L K F S V A G P S N M A V Q G R N Y 275 276 I P G P S Y R O O R V S T T V T O N N N S E F A W 300 301 P G A S S W A L N G R N S L M N P G P A M A S H K 325 326 E G E D R F F P I, S G S I, T F G K O G T G R D N V 350 351 D A D K V M I T N E E E I K T T N P V A T E S Y G 375 376 Q V A T N H Q S A Q A Q A Q T GLW V Q N Q G I L P 400 401 G M V W O D R D V Y L O G P I W A K I P H T D G N 425 426 F H P S P L M G G F G M K H P P P O I L I K N T P 450 451 V P A D P P T ALF N K D K L N S F I T Q Y S T G Q 475 476 V S V E I E W E L Q K E N S K R W N P E I Q Y T S 500 501 N Y Y SIL N N V E F A V N T E G V Y S E P R P I G 525 526 TRYLTRNLC

K55 Ac - 37%

K461 Ac - 15%

N A S G G G A P V A D N N E G A D G V G S S S G N W 26 H C D S Q W L G D R V I T T S T R T W A L P T Y N 51 N H L Y K Q I S N S T S G G S S N D N A Y F G Y S 75 76 T P W G Y F D F N R F H C H F S P R D W O R L I N 100 101 N N W G F R P K R L N F K L F N I O V K E V T D N 125 126 N G V K T I A N N L T S T V O V F T D S D Y O L P 150 151 Y V L G S A H E G C L P P F P A D V F M I P Q Y G 175 176 Y L T L N D G S O A V G R S S F Y C L E Y F P S O 200 201 M L R T G N N F O F S Y E F E N V P F H S S Y A H 225 226 S O S T. D B T. M N P T. T D O Y T. Y Y T. S K T T N G 250 251 S G O N O O T L K F S V A G P S N M A V O G R N Y 275 276 I P G P S Y R O O R V S T T V T O N N N S E F A W 300 301 P G A S S W A L N G R N S L M N P G P A M A S H K 325 326 E G E D R F F P L S G S L I F G K O G T G R D N V 350 351 D A D K V M I T N E E E I K T T N P V A T E S Y G 375 376 Q V A T N H Q S A Q A Q A Q T G W V Q N Q G I L P 400 401 G M V W Q D R D V Y L Q G P I W A K I P H T D G N 425 426 F H P S P L M G G F G M K H P P P O I L I K N T P 450 451 V P A D P P T ALF N K D KLLN SLFLITLQ YLS T G Q 475 476 V S V E I E W E L O K E N S K R W N P E I O Y T S 500 501 N Y Y K S N N V E F A V N T E G V Y S E P R P I G 525 526 TRYLTRNLC

What about VP1 and VP2?

Sequence Coverage Maps

VP2 (10% sequence coverage)

N A P G K K R P V E Q S P Q E P D S S A G I G K S G 25 26 A]Q]P A K]K]R L N F G Q]T G D]T E]S]V]P D]P]Q]P I] 50 51 G E P P A A P S G V G S L T MAS G G G A P V A D 75 76 N N E G A D G V G S S S G N W H C D S O]W L G D R 100 101 V I T T S T R T W A L]P T Y N N H L Y K Q I S N S 125 126 T S G G S S N D N A Y F G Y S T P W G Y F D F N R 150 151 F H C H F S P R D W Q R L I N N N W G F R P K R L 175 176 N F K L F N I O V K E V T D N N G V K T I A N N L 200 201 T S T V Q V F T D S D Y Q L P Y V L G S A H E G C 225 226 L P P F P A D V F M I P O Y G Y L T L N D G S O A 250 251 V G R S S F Y C L E Y F P S Q M L R T G N N F Q F 275 276 S Y E F E N V P F H S S Y A H S O S L D R L M N P 300 301 L I D Q Y L Y Y L S K T I N G S G Q N Q Q T L K F 325 326 S V A G P S N M A V O G R N Y I P G P S Y R O O R 350 351 V S T T V T Q N N N S E F A W P G A S S W A L N G 375 376 R N S L M N P G P A M A S H K E G E D R F F P L S 400 401 G S L I F G K Q G T G R D N V D A D K V M I T N E 425 426 E E I K T T N P V A T E S Y G Q V A T N H Q S A Q 450 451 A Q A QITIG WIVIQINIQIG ILLIP G M V W Q D R D V Y 475 476 L Q G P I W A K I P H T D G N F H P S P L M G G F 500 501 G M K H P PLP Q I L I K N T P V P A D P P T A F N 525 526 K D K L N S F I T Q Y S T G Q V S V E I E W E L Q 550 551 K E N S K R W N P E I Q Y T S N Y Y K S N N V E F 575 576 ALVIN TIELG V Y S E P RIP I G T R Y L T R N L C

Lower abundance of VP1 and 2 resulted in lower sequence coverage. Interestingly, most fragmentation observed in the N-terminal region. Further investigation on-going.

VP1 (5% sequence coverage)

N A A D G Y]L]P D]W L E D N L S E G I R E W W A L K 25 26 P G A P Q P K ANQ Q H Q D N A R G L V L P G Y K 50 51 Y L G P G N G L D K G E P V N A A D A A A L E H D 75 76 K A Y D Q Q L K A G D N P Y L K Y N H A D A E F Q 100 101 E R L K E D T S F G G N L G R A V F Q A K K R L L 125 126 E P L G L V E E A A K T A P G K K R P V E Q S P Q 150 151 E P D S S A G I G K S G A Q P A K K R L N F G Q T 175 176 G D T E S V P D P Q P I G E P P A A P S G V G S L 200 201 T M A S G G G A P V A D N N E G A D G V G S S S G 225 226 N W H C D S Q W L G D R V I T T S T R T W A L P T 250 251 Y N N H L Y K Q I S N S T S G G S S N D N A Y F G 275 276 Y S T P W G Y F D F N R F H C H F S P R D W Q R L 300 301 I N N N W G F R P K R L N F K L F N I Q V K E V T 325 326 D N N G V K T I A N N L T S T V Q V F T D S D Y Q 350 351 L P Y V L G S A H E G C L P P F P A D V F M I P Q 375 376 Y G Y L T L N D G S Q A V G R S S F Y C L E Y F P 400 401 S Q M L R T G N N F Q F S Y E F E N V P F H S S Y 425 426 A H S Q S L D R L M N P L I D Q Y L Y Y L S K T I 450 451 N G S G Q N Q Q T L K F S V A G P S N M A V Q G R 475 476 N Y I P G P S Y R Q Q R V S T T V T Q N N N S E F 500 501 A W P G A S S W A L N G R N S L M N P G P A M A S 525 526 H K E G E D R F F P L S G S L I F G K Q G T G R D 550 551 N V D A D K V M I T N E E E I K T T N P V A T E S 575 576 Y G Q V A T N H Q S A Q A Q A Q T G W V Q N Q G I 600 601LLP G M V W Q D R D V Y L Q G P I W A K I P H T D 625 626 G N F H P S P L M G G F G M K H P P Q I L I K N 650 651 T P V P A D P P T A F N K D K L N S F I T O Y S T 675 676 G Q V S V E I E W E L Q K E N S K R W N P E I Q Y 700 701 T S N Y Y K S N N V E F A V N T E G V Y S E P R P 725 726 I G T R Y L T R N L C

AAV Peptide Mapping Workflow

Efficient digestion of AAV using pepsin. Immobilised protease on magnetic beads enabled tight time control when combined with KingFisher Duo Prime Automation Station.

HCP Analysis Using Orbitrap Astral LC-MS

The Thermo Scientific[™] Orbitrap[™] Astral[™] MS - Powered by the synergy of two synchronized HRAM analyzers

ORBITRAP ANALYZER for high dynamic range HRAM MS and MS/MS										
HRAM Scan Rate	Up to 40 Hz									
Intrascan dynamic range	>5000 with single microscan									
Max Resolution	480,000 at <i>m/z</i> 200									
Mass Accuracy	RMS <3 ppm									
Max <i>m/z</i> range	Up to <i>m/z</i> 8000 with Biopharma Option									

ASTRAL ANALYZER for fast and sensitive high dynamic range HRAM SIM and MS/MS										
Sensitivity	Single ion detection									
HRAM Scan Rate	Up to 200 Hz									
Intrascan dynamic range	>1000 with single microscan									
Resolution	80,000 at <i>m/z</i> 524									
Mass Accuracy	RMS <5 ppm									

Sample Preparation Workflow

Neo coupled to Orbitrap Astral MS

Tracking HCP Clearance using AAVX Affinity Chromatography

What Remained Associated with Purified CMV-GFP AAV8?

- AAVX purification resulted in ~80% reduction in the levels of HCPs present in the process stream using a simple bind and elute method.
- For proteins associated with the retained viral capsids, GO terms relating to binding, in particular protein binding (92.7% of the total set) were enriched. 97.1% were mapped as being intracellular proteins.
- Standard physiochemical parameters were explored including molecular mass, pl, hydrophobicity *etc.* However, distributions were broad and as expected, no correlation existed.

Exploring HCP Distribution Across Various AAV Serotypes

Monitoring Clearance During Downstream Processing

Post AAVx affinity purification, anion exchange separation of empty and full capsids were performed using Poros XQ. Fractions were collected and analysed by LC-MS on Orbitrap Astral to investigate clearance of the HCPs and distribution across the different capsid fill states.

Distribution of HCP across Empty and Full Capsids

							Clarified		A	AVX Purifie	d		Empty			Full	
				Empty	Potentially Harmful HCPs	AAV5	AAV7	AAVrh10	AAV5	AAV7	AAVrh10	AAV5	AAV7	AAVrh10	AAV5	AAV7	AAVrh10
AAV5	11.46%	47.21%	41.33%	Full	Heat shock 70 kDa protein 1B	9345.64	9533.52	8595.08	23.49	38.43	15.14	4.68	3.21	2.69	3.34	1.78	2.61
				Both	Heat shock protein HSP 90-alpha	2457.25	2392.91	1184.63	7.12	7.92	0.60	0.14	0.25	0.14	0.18	0.54	0.27
					Heat shock protein HSP 90-beta	1016.23	1018.65	2064.89	2.81	5.20	2.78	0.19	0.18	0.49	0.17	0.25	0.65
					Heat shock cognate 71 kDa protein	736.99	705.87	629.43	3.90	2.07	0.82	0.44	0.36	0.44	0.67	0.36	0.51
					60 kDa heat shock protein, mitochondrial	561.73	519.28	544.00	0.66	1.77	0.22	0.07	0.20	0.02	0.15	0.10	0.06
AAV7	22.09%	29.12%	48.79%		Pyruvate kinase PKM	383.34	381.16	334.20	3.41	6.72	2.35	0.26	0.51	0.51	0.88	0.92	1.41
					DNA-binding protein	185.63	242.56	258.81	0.03	0.20	0.07		0.06				
					Histone H1.4	116.54	99.24	100.20									
					Histone H4	75.59	63.65	67.62	3.51	4.46	1.43	0.29	0.24	0.23	0.38	0.46	0.48
	9.26%	EE E204	26 2204		Protein disulfide-isomerase	64.42	47.73	70.53	0.09	0.14	0.01		0.03		0.02	0.09	0.05
AAVrh10	8.20%	55.55%	30.2270		E1B 55 kDa protein	63.24	58.20	47.12									
					Annexin A2	57.37	53.66	51.90	3.66	0.38	0.80	0.70	1.56	0.92	2.08	1.18	2.23
					Peroxiredoxin-2	37.52	33.10	37.38	2.96	0.30	0.27	0.63	1.51	0.25	2.36	1.56	2.28
0	100	200 300 400	0 500 600 7	700 800	E1B protein, small T-antigen	28.93	26.99	22.42	0.02	0.03							
		Number o	of HCPs														
						10000	50 th	20	40	50 th	0	5	50 th	0	5	50 th	0

- As expected, ability to separate empty and full capsids effected the ability to differentiate HCP loads, however some specificity was observed.
- Similarly, specificity was observed for the serotypes analysed.
- 'Problematic HCPs' were investigated in the resulting LC-MS data to evaluate their clearance, as shown in the heatmap, the majority were cleared by AAVx affinity chromatography.

Summary

- Native MS and CDMS can be coupled with upfront anion exchange chromatography for confirmation of capsid fill state. Partial capsids not observed either by chromatography or MS, thought to be due to GOI size.
- Viral protein separation possible using various chemistries, HILIC method works well and is simple to deploy, however, reversed-phase outperforms for separation of deamidated forms.
- Top-down MS/MS showing strong potential for VP specific characterisation. Combination of different ion activation strategies on tribrid MS instrument enabled excellent N- and Cterminal fragmentation.
- HCP behaviour investigated using throughout the downstream process for HEK293 derived serotypes using Orbitrap Astral. Some specificity identified based on the serotype and capsid fill state, however, AAVx affinity chromatography enables bulk clearance.

NIBRT:

Acknowledgements

×908 devices

Thermo Fisher S C I E N T I F I C Josh Smith, Corentin Beaumal, Sara Carillo, Aaron Richardson, Felipe Guapo, Colin Clarke, Florian Füssl, Lisa Strasser, Silvia Millán-Martín

Thermo Fisher Scientific:

Eugen Damoc, Anna Pashkova, Kristina Srzentic, Tabiwang N. Arrey, Kai Scheffler, Kelly Broster, David M. Horn, Min Du, Steve G. Milian, Richard O. Snyder

908 Devices: Erin Redman

$\mathbf{P} = \mathbf{V} \in \mathbf{P} = \mathbf{V}$ $\mathbf{P} = \mathbf{\Lambda} \mathbf{C} \mathbf{I} \mathbf{P} = \mathbf{\Lambda} \mathbf{C}$

CONCEPT More info: concept-nibrt.ie