

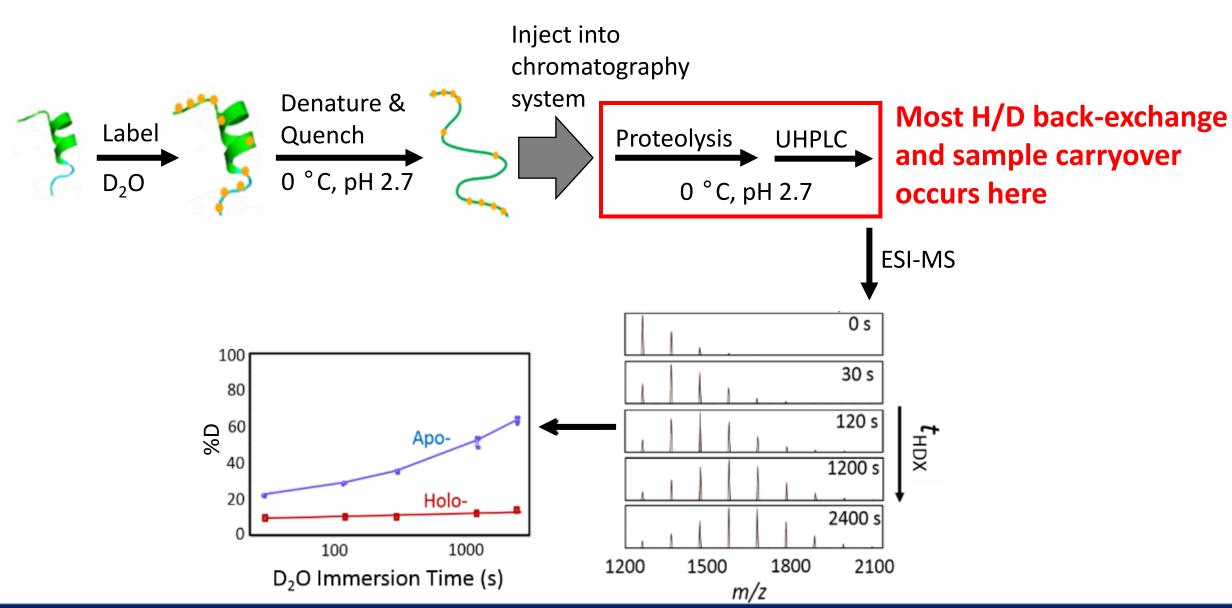
Kyle W. Anderson

Bioprocess Measurements Group, Biomolecular Measurement Division, National Institute of Standards and Technology

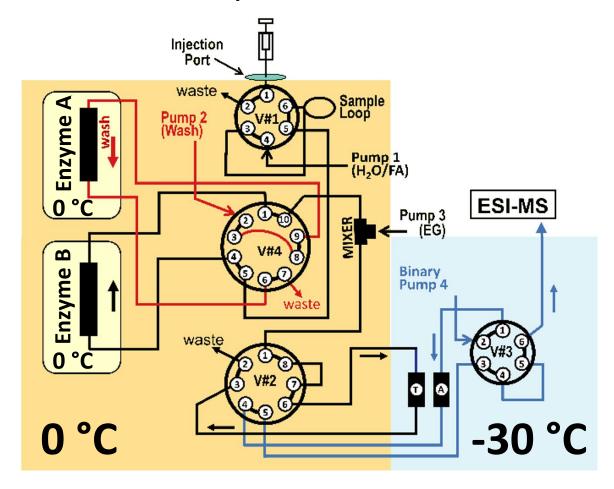
Institute for Bioscience and Biotechnology Research

HDX for measuring protein structural dynamics

- conformations of proteins and complexes
- binding interactions
- epitope mapping
- allosteric effects
- folding dynamics
- stability
- biosimilarity


Problem: Back-exchange

- Loss of deuterium label impairs dynamic range of HDX
- Back-exchange can cause poor reproducibility between labs
- Poor temperature regulation causes unsuitable repeatability
- Conventional HDX-MS systems operating at pH 2.7 and 0 °C can lose 30-40% D in 15 min

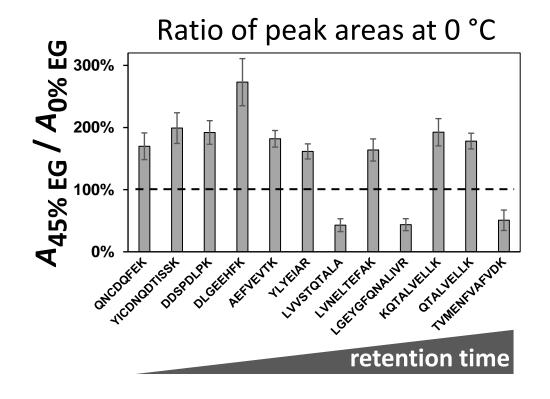

Challenges

- Subzero temperatures can reduce back-exchange, but buffer modifiers are needed to prevent freezing
- Solvents like methanol can impair peptide retention on reversed phase trap columns (>40% MeOH by volume needed for -30 °C)

HDX-MS Workflow

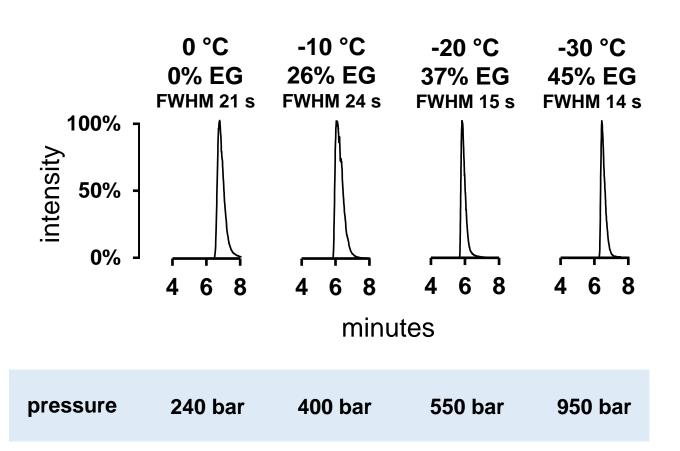
Dual-enzyme, subzero temperature HDX-MS system

Zone	T ± SD, °C		
Preparation	0.00 ± 0.06		
Analytical	-30.00 ± 0.02		
Enzyme A	0.000 ± 0.002		
Enzyme B	0.000 ± 0.002		


Precise temp. control

- Trap and analytical columns at subzero temp.
- Backflushing of all columns is supported
- Concurrent cleaning with analytical runs
- Enzyme column cleaning with binary pump
- Allows combinations of proteases, glycosidases, and enzyme columns at independent temps. needed for activity

Does EG affect ESI-MS signal?


BSA tryptic peptides measured at 0 °C with 0% EG and 45% EG in aqueous mobile phase

0 °C	0 % EG		
-10 °C	26 % EG		
-20 °C	37 % EG		
-30 °C	45 % EG		

Added EG has no negative impact

Effects of EG & temperature on chromatography

- Decrease in temperature increases retention time
- Peptide separation not degraded
- Pressure increases with EG and lower temperature
- Thermo Vanquish pump and stainless steel tubing used to meet pressure requirements
- LC Pump capacity dictates trap and analytical column specifications

Trap column: 2.1 mm x 20 mm, 2.6 μm

Analytical column: 2.1 mm x 30 mm, 2.6 μm

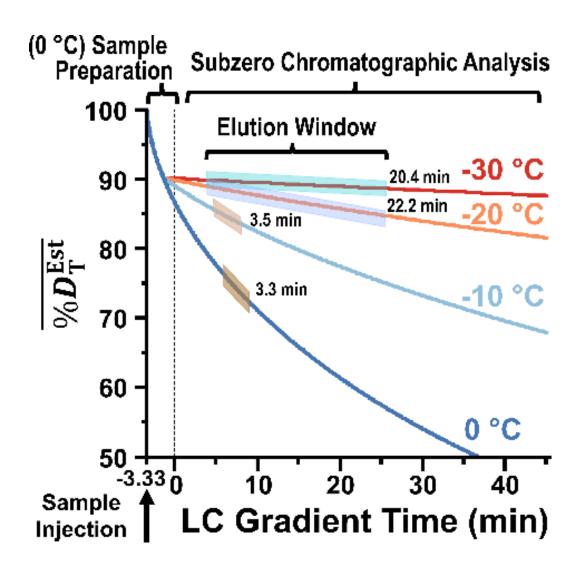
HDX sites

HDX rate of side chains is too fast $(t_{ex} < 1 \text{ ms})$

HDX rate of amide backbone is more easily measured ($t_{ex} = 10$ s to hours)

%D calculation: Should we rethink D_{max} ?

$$\%D = \frac{m_{t,HDX} - m_{0\%}}{m_{100\%} - m_{0\%}} \times 100\%$$

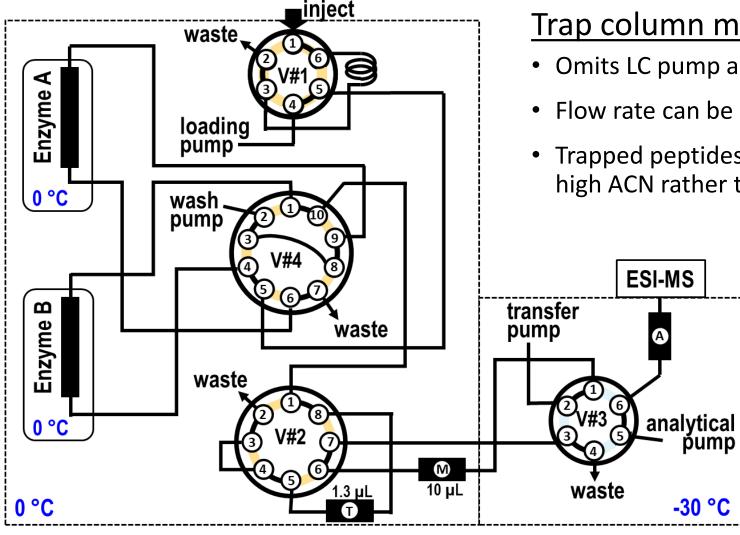

90% D using n-1 exchangeable backbone amides

72% D using all exchangeable backbone amides

HDX-MS characteristics at $T \le 0$ °C

LC gradient duration, min	8	8	8	8	40	40
T _{Zone 2} , °C	0	-10	-20	-30	-20	-30
Elution window, min	3.30 ± 0.02	3.5 ± 0.1	4.40 ± 0.02	5.30 ± 0.07	22.2 ± 0.2	20.4 ± 0.2
Average %D for 12 peptide set	72 ± 11	83 ± 9	90 ± 10	90 ± 10	87 ± 9	89 ± 10
%D improvement		11 ± 14	18 ± 15	18 ± 15	15 ± 14	17 ± 15
%D improvement for high 3 peptides		18 ± 3	27 ± 1	24 ± 3	26.7 ± 0.7	25.3 ± 0.3

HDX-MS characteristics at $T \le 0$ °C

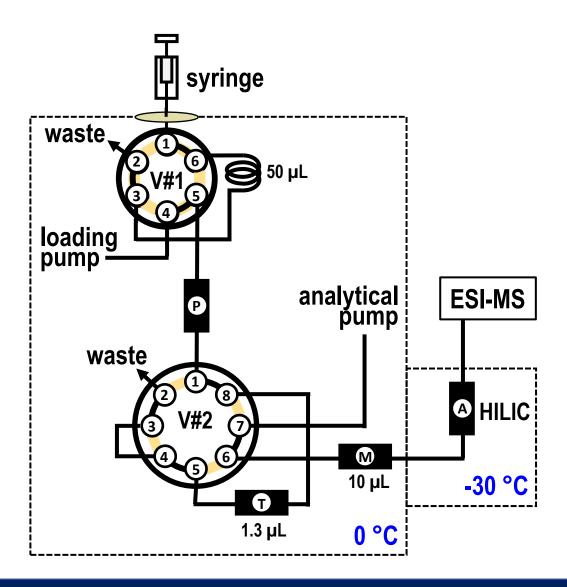


- Most of back-exchange for -30 °C measurements comes from sample prep zone
- Gradients at -30 °C could be extended with minimal backexchange

HILIC analytical separations to reduce pressures

- Backpressures at -30 °C were suitable for latest UHPLC pumps, but methods to reduce pressures could more easily facilitate adoption of subzero chromatography for HDX-MS and improve its robustness.
- Reversed phase liquid chromatography (RPLC) gradients start with ≈97% water.
- Hydrophilic interaction liquid chromatography (HILIC) gradients elute with ≤50% water or polar solvent.
- Greater fraction of water requires more ethylene glycol to prevent freezing at subzero temperatures. Both water and ethylene glycol increase backpressures.
- HILIC can use methanol in place of water for elution.

Modifications to subzero LC system for HILIC


Trap column moved to prep chamber

- Omits LC pump adding EG at mixing T before trap
- Flow rate can be increased from 50 to 200 μL/min
- Trapped peptides immediately elute to HILIC column with high ACN rather than slowly eluting like in RPLC

	RPLC	HILIC
Proteolysis	120 s, 0 °C	eu · u ° c
time, temp.	1203,0 C	00 3, 0 C
Desalting	80 s, -30 °C	
time, temp.	80 S, -30 C	
Transfer		10 s, 0 °C
time, temp.		103,0 C

• Microtrap and 10 μ L mixer used to reduce concentration of water during sample loading

Simplest 2 valve, 2 pump system for HILIC

HILIC can reduce backpressures

$T_{\mathrm{Zone}\ 2}$, °C	Mode	Aqueous/polar solvent volume fractions,	Loading pump pressure, bar	Analytical pump pressure, bar
0	RPLC	100% H ₂ O	70	240
-20	RPLC	63% H ₂ O, 37% EG	200	550
-20	HILIC	63% H ₂ O, 27% EG, 10% MeOH	50	130
-30	RPLC	55% H ₂ O, 45% EG	240	950
-30	HILIC	63% H ₂ O, 27% EG, 10% MeOH	50	320
-30	HILIC	100% MeOH	50	60

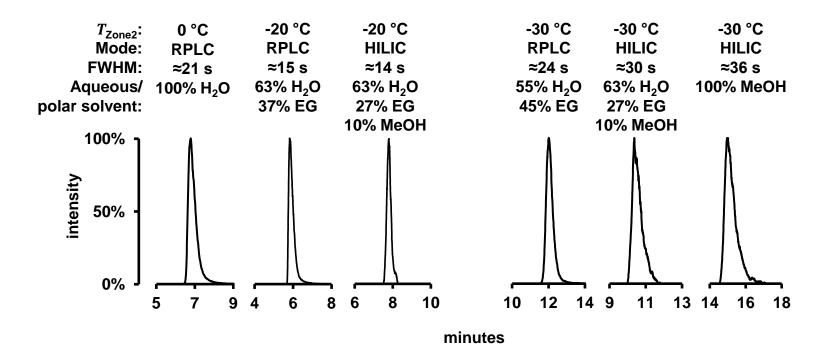
Mixtures contain a volume fraction of 0.1% FA.

Column dimensions for reversed phase LC

Trap: 2.1 mm x 20 mm, 2.6 μm

RP analytical: 2.1 mm x 30 mm, 2.6 μm

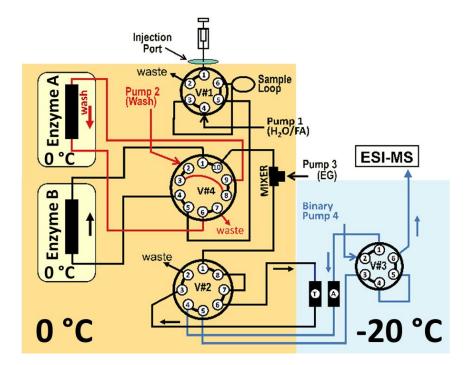
Column dimensions for HILIC


Trap: 0.5 mm x 10 mm, 5 μm

HILIC analytical: 2.1 mm x 100 mm, 1.8 μm

Effects on chromatography

LC peak profiles observed for peptide YLYEIAR²⁺


%D recovery in RPLC vs HILIC

LC gradient duration	8 min	8 min	10 min	40 min	30 min	40 min
Method	RPLC	RPLC	HILIC	RPLC	HILIC	HILIC
T _{Zone 2} , °C	one 2, °C 0		-20	-30	-30	-30
% EG in polar/aqueous solvent		37	27	45	27	
% MeOH in polar/aqueous solvent			10		10	100
Average %D for 21 peptides	71 ± 7	89 ± 7	84 ± 7	89 ± 7	81 ± 8	84 ± 9
%D improvement		18 ± 10	13 ± 10	18 ± 10	10 ± 11	13 ± 11
%D improvement for high 3 peptides		27 ± 2	20 ± 2	26 ± 1	19 ± 1	24 ± 2

Best RPLC condition for gradients <45 min

$T_{\text{Zone 2}}$	Mode	Aqueous/polar solvent volume	Loading pump	Analytical pump	
°C	Mode	fractions,	pressure, bar	pressure, bar	
-20	RPLC	63% H ₂ O, 37% EG	200	550	
-20	RPLC	68% H ₂ O, 32% MeOH	200	200	

Mixtures contain a volume fraction of 0.1% FA.

Solvent after T-mixer: 63% H₂O, 37% EG

Analytical pump

Solvent A: 32% MeOH, 68% H₂O, 0.1% FA

Solvent B: ACN, 0.1% FA

Summary

System allows complex cleaning to remove carryover

2 enzyme column compartments

Rigorous temperature control

Reduced back-exchange

- -30 °C chromatography can enable long gradients to increase peptide detection
- Minimal back-exchange across elution window improves peptide comparability
- Improves reproducibility across labs

HILIC methods to facilitate adoption of -30 °C chromatography

• HILIC analytical separations greatly reduce pressures and allow faster flow rates

More reliable HDX-MS system for biopharma QC programs and protein similarity studies

Publications

- 1. Anderson, K. W.; Hudgens, J. W. Chromatography at -30 °C for Reduced Back-Exchange, Reduced Carryover, and Improved Dynamic Range for Hydrogen–Deuterium Exchange Mass Spectrometry. J. Am. Soc. Mass Spectrom. 2022.
- 2. Anderson, K. W.; Hudgens, J. W. Hydrophilic Interaction Liquid Chromatography at Subzero Temperature for Hydrogen-Deuterium Exchange Mass Spectrometry. *J. Am. Soc. Mass Spectrom.* 2023.
- 3. Hudgens, J. W. Construction of a Dual Protease Column, Subzero (-30 °C) Chromatography System and Multi-channel Precision Temperature Controller for Hydrogen-Deuterium Exchange Mass Spectrometry. *J. Res. Natl. Inst. Stand. Technol.* 2020.

Acknowledgements

Jeffrey Hudgens, NIST (construction of subzero system)

Stephen Coales, Trajan Scientific and Medical (technical advice)

Disclaimer: Certain commercial materials and equipment are identified to adequately specify experimental procedures. Such identifications neither imply recommendation or endorsement by the National Institute of Standards and Technology nor does it imply that the material or equipment identified is the best available for the purpose.

