

Application of Mass Spectrometry for AAVbased Gene Therapy Analysis

Yi Pu CASSS Mass Spec Sep 17, 2020

Adeno-associated Virus (AAV) for Gene Therapy

Figure adapted from: Li, et al. 2019, Cell & Gene Therapy Insights 2019; 5(4), 537-547

Wild Type AAV Structural Characteristics and Quality Attributes

Capsid Proteins - Viral Proteins (VPs)

Adeno-Associated Virus		
3.9 MegaDaltons (empty capsids)		
Small icosahedral particles (20-25 nm in diameter)		
Natively package ssDNA to ~ 4.7 kb		
Replication-defective, nonenveloped virus		
Non-pathogenic, mildly immunogenic; Low level integration, maintained episomally		
Many distinct serotypes		

Examples of AAV attributes	
Capsid purity	
Capsid identity	
Vector particle titer	
Empty/full capsid	
	-

Comparing AAV Size with Other Drug Modalities

ASO: antisense oligonucleotide mAb: monoclonal antibody

Key Structural Characteristics of AAV Products

- What modifications could affect the potency/stability? •
- Are there size/charge variants? ٠

protein ratio

How much residual impurities are there after purification?

Deep characterization and HCP/host cell DNA

Mass Spectrometry (MS) Applications for Gene Therapy Development

Approaches	Attributes	Methods
Intact AAV analysis	 AAV empty-to-full ratio, partially filled with truncated DNA; High molecular weight (HMW) species characterization 	 Native/charge detection MS
Intact viral protein analysis	 Serotype identification; Mutant identification 	CE-MSRPLC-MS
Peptide map	 Sequence coverage; Capsid PTM characterization; Mutant identification; Major HCPs identification/quantification 	• RPLC-MS
Process impurity analysis	Residual impurity quantification	RPLC-MS
ssDNA characterization	 Sequence and size distribution (orthogonal to NGS) 	Negative mode MS
Structure-function characterization	 Critical quality attributes (CQA) 	Custom LC-MS workflow

Challenges in Gene Therapy Mass Spec Analysis

- AAV is much larger in size and with complex heterogeneity
 - Analyzing intact AAV in native state can provide rich information but requires advanced instruments with higher mass range and/or charge detection capability.
 - Heterogeneity could be introduced by capsid purity, genome integrity, and/or packaging behavior, etc.
- Historical knowledge and literatures are limited
- Sample availability is limited, and sample concentration is low

Case Study 1: AAV Identification by Intact Viral Protein Analysis

Intact Protein Mass Analysis for AAV Identity

AAV Serotype	Viral Proteins (VPs)	Theoretical Mass (Da)
	Acetyl VP1 (2-736)	81286
AAV1	VP2 (139-736)	66093
	Acetyl VP3 (204-736)	59517
	Acetyl VP1 (2-735)	81856
AAV2	VP2 (139-735)	66488
	Acetyl VP3 (204-735)	59974
	Acetyl VP1 (2-736)	81291
AAV9	VP2 (139-736)	66210
	Acetyl VP3 (204-736)	59733
	Acetyl VP1 (2-738)	81455
AAVRh10	VP2 (139-738)	66253
	Acetyl VP3 (204-738)	59634

- The combination of mass measurement of intact VP1, VP2, and VP3 proteins is highly specific as an identity test.
- Potentially transferable to QC.
- The mass differences exist for wild type AAV serotypes from AAV1 to AAV12

ZipChip CE-MS Intact Mass Analysis

ZipChip CE-MS Intact Protein Analysis of AAV2tYF

 The three capsid proteins of AAV2tYF were separated by CE and subsequently identified by MS

 The method only took 10 min with 5 nL of sample injected.

Figure adapted from: Zhang, Y. et al Analytical Biochemistry 555 (2018) 22-25

LC-MS Intact Protein Method

RP-C8-MS Intact Mass Analysis of AAV Serotype "A"

d Proprietary 13

2D Deconvolution of Intact Protein Analysis (AAV Serotype "A")

- VP1 is partially overlapped with the pre-peak (peak 1) of VP3.
- VP1 is partially phosphorylated and the phosphorylated species co-elutes with unmodified one.
- VP3 contains two peaks with nearly identical mass, possibly due to presence of deamidated species.

Case Study 2: Characterization of AAV Empty/Full Capsids by CDMS

Loss of Charge State Resolution of Large Molecules

Figures adapted from: Benjamin E. Draper at Megadalton Solutions

T: triangulation numbers Biogen | Confidential and Proprietary 16

CDMS of AAV

Theoretical Mass of Empty Capsid (1:1:8): 3.75 MDa

- Two primary populations of capsids detected corresponding to empty and full particles
- Some "intermediate" (partially filled) particles observed

• Empty, partial, and full capsids have similar charge characteristics.

• High-molecular-weight (HMW) species could be characterized.

CDMS and Sedimentation Velocity Analytical Ultracentrifugation (SV-AUC)

CDMS

Simultaneously measure m/z (mass to charge ratio) and z (charge)

- Resolves intermediate species
- Provide masses of particles
- Provide charge for each species
- o Instrument not commercially available yet

SV-AUC

Separate and quantify based on size, shape and mass

- Resolves intermediate species
- Commercial instrument
- o High sample amount required
- Low throughput
- o Labor intensive

Good correlation between AUC and CDMS for Empty and Full

SV-AUC and CDMS are suitable for quantifying empty and full capsids

Poor correlation between AUC and CDMS for Partial and HMWs

Case Study 3: Residual Iodixanol Quantification to Support Process Development

Background

• Iodixanol-based density gradient is commonly used for AAV purification.

- However, residue iodixanol, as an in-process impurity, may present a safety concern.
- An analytical method with high sensitivity is essential to ensure sufficient clearance of iodixanol, and hence safety of AAV product.

A RPLC-MS Method for Iodixanol Quantification

23

Sensitivity and Linearity

LOQ of 0.01 µg/mL can be achieved.

 $Area Ratio = \frac{Peak Area of iodixanol}{Peak Area of internal standard}$

Application to Analysis of AAV In-process and DS Samples

- A highly efficient purification method was further explored for removal of the residual iodixanol.
- The two AAV batches after purification showed residual iodixanol levels well below the recommended safety threshold.

Conclusions

- Mass spectrometry (MS) is a powerful analytical tool that shows great promise in AAV-based gene therapy development.
- The combination of *intact mass measurement* of VP1, VP2, and VP3 proteins is highly specific as an identity test using CE-MS or LC-MS.
- SV-AUC and **CDMS** are suitable for characterizing empty and full capsids.
- A **MS-based method** for iodixanol quantification was successfully developed and applied in support of process development.

Acknowledgements

Analytical Development

Hui-wen Liu

Dana Tribby

Vinay Bhatt

Rachel Chen

Wei Zhang

Zoran Sosic

Svetlana Bergelson

Bernice Yeung

Brian Fahie

Gene Therapy-Process Development

Russell Katz

Research

Vic Kostrubsky

Pete Clarner

Joyce Lo