

New QC Identity Testing For Acellular Pertussis Combination Vaccines Using LC-MS Hong Zhang, Analytical Science, Toronto, Canada

Project Background

- Current ID testing
- Project objective
- Cost benefit analysis

Method Development and Validation

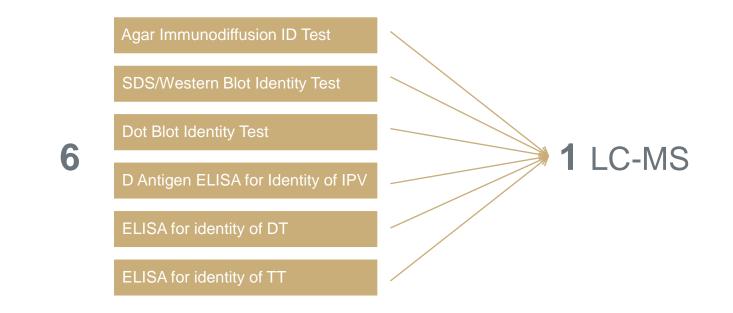
- Protein antigen identification
- Challenges for peptide identification and validation
- Dosage differentiation
- Method validation results

Test Transfer and Implementation

- Submissions and regulatory approvals
- Test transfer and implementation in QC
- Benefits after implementing LC-MS ID test in QC
- Other applications
- Summary and next steps

Project Background

Current Identity Testing in QC

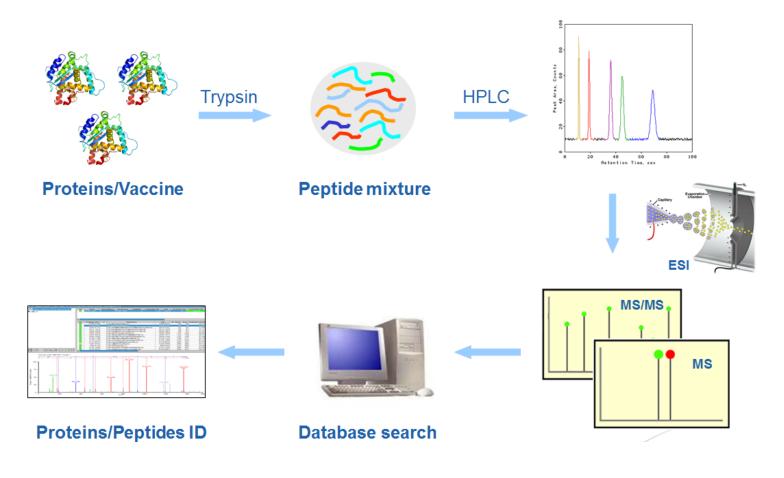

• The identity of acellular pertussis and related combination vaccines is determined at the Final Bulk, Filled Product and/or Labeled Filled Product stages by several QC tests, such as:

- Agar Identity for detection of Diphtheria Toxoid (DT) and Tetanus Toxoid (TT)
- SDS-PAGE/Western Blot Identity Test for detection of Filamentous Haemagglutinin (FHA), Fimbriae (FIM), Pertussis Toxoid (PT), and Pertactin (PRN)
- Dot Blot Identity Test for detection of high or low dose of Diphtheria Toxoid (DT), high, low or no Filamentous Haemagglutinin (FHA) content, presence or absence of Inactivated Poliomyelitis Vaccine (IPV) Type 1
- ELISA for Identity of Inactivated Poliomyelitis Vaccine (IPV) Type 1, Type 2, Type 3
- ELISA for identity of Diphtheria Toxoid (DT)
- ELISA for identity of Tetanus Toxoid (TT)
- These tests are labor-intensive, time consuming, and require use of antibodies that are expensive to produce, qualify, and store
- Some of these tests generate a high invalidity rate

Develop one LC-MS ID test to replace QC ID tests

• Protein antigen identification

	Total Labor Cost (\$CAN)	# of Antibody Reagents	# of Test Methods
Current ID Tests	621,504 (4 ID tests)	>18	6
LC-MS ID Test	166,355	0	1
Analysis	455,149 (73%↓)	(100%↓)	(83%↓)



Method Development & Validation

Protein Antigen Identification

 LC-MS identifies protein antigens by detecting antigen specific peptides

Challenges for Peptide Identification

Sample Complexity in Pediacel

- Diphtheria & Tetanus (D, TT)
- Five component acellular Pertussis (FIM, FHA, PT, PRN)
- Inactivated Poliovirus Types 1, Type 2, and Type 3

• PRP-T

 Sequence Similarity of IPV Antigens (% of identical sequence to Type 1) make the identification of IPV type-specific peptides more challenging.

	VP1	VP2	VP3	VP4
IPV Type 1	100%	100%	100%	100%
IPV Type 2	77.1%	88.6%	87.4%	97.1%
IPV Type 3	75.7%	83.4%	84.9%	92.6%

Challenges for Peptide Validation

SANOFI PASTEUR 🌄

Validate peptides across a vaccine panel

Detected reproducibly throughout vaccine samples at a sufficient level

Do not contain Cys or Met

Reasonable size and good fragmentation for MS/MS verification

Antigen ID Testing Results Using LC-MS

Data Analysis

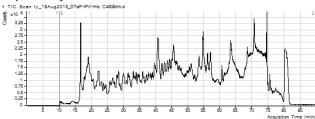
Ducch			
D:\MassHunter\Data	a\GMP\18Aug2015\Quar	tResults\ly_24Aug20:	15_Batch18Aug2015.batch.bin
Analysis Time	2015-08-24 10:09	Analyst	PASTEUR\i0176191
Report Time	2015-08-24 10:12	Quant. Method	LGMS Product ID_v1.quantmethod.xml

Data Acquisition

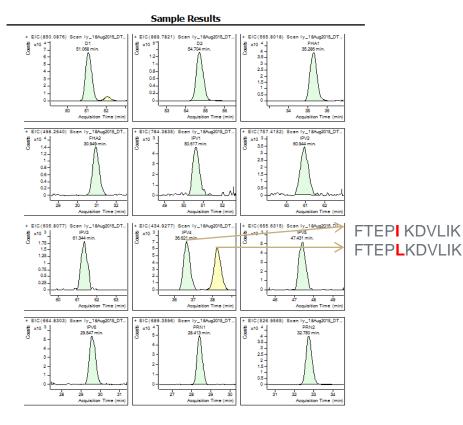
 Acq Time
 2015-08-21 04:58
 Data File

 Sample Position
 P1-C9
 Sample N

 Inj. Vol. (µL)
 20
 Acq Meth


 Acq.Operator
 PASTEUR\0176191
 PASTEUR

 Data File
 h_18Aug2015_DTaP.IPV.Hb
 G4608AAd


 Sample Name
 h_17Aug2015_DTaP.IPV.Hb
 G4608AAd

 Acq Method File
 APT Product ID_Acq_protein.m

Sample Chromatogram

Sample Re	esults				
Peptide	m/z	R	Area	ME	Height
D1	850.0876	51.068	1527992		66439
D2	889.7821	54.704	3385799		131516
FHA1	565.8018	35.286	1002426		39460
FHA2	498.2640	30.949	349242		14059
IPV1	784.3835	50.617	118143		4650
IPV2	757.4152	60.944	100974		3411
IPV3	605.8077	61.344	41639		1815
IPV4	434.9277	36.621	169677		7101
IPV5	655.6315	47.431	129222		5271
IPV6	664.8303	29.547	123932		5423
PRN1	689.3596	28.413	975945		49091
PRN2	526.9565	32.750	910489		40428
PT1	551.3355	45.512	9220699		350873
PT2	569.2809	30.815	1922001		80803
TT1	578.6391	50.033	384654		15134
TT2	868.4254	40.674	1456927		56622
FIM1	359.7291	29.631	117804		4376

LC-MS Product ID_report template_with IPV1_v1

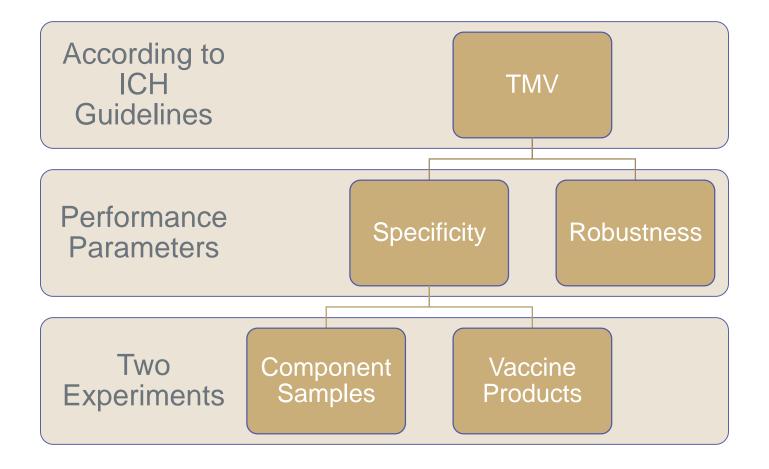
Page 1 of 3

Printed at: 10:34 AM on: 2/3/2016

LC-MS Product ID_report template_with IPV1_v1


Page 2 of 3

Printed at: 10:36 AM on: 2/3/2016


Dosage Differentiation Using LC-MS ID Method

• Successfully developed a simple and reliable method for dosage differentiation.

Test Method Validation (TMV)

Specificity for Antigen Components

Antigen Component	# of Lot	D peptides	TT peptides	FHA peptides	FIM peptide	PT peptides	PRN peptides	IPV Type 1 peptide	IPV Type 2 peptide	IPV Type 3 peptide
D	3	Pos	Neg	Neg	Neg	Neg	Neg	Neg	Neg	Neg
тт	3	Neg	Pos	Neg	Neg	Neg	Neg	Neg	Neg	Neg
FHA	3	Neg	Neg	Pos	Neg	Neg	Neg	Neg	Neg	Neg
FIM	3	Neg	Neg	Neg	Pos	Neg	Neg	Neg	Neg	Neg
РТ	3	Neg	Neg	Neg	Neg	Pos	Neg	Neg	Neg	Neg
PRN	3	Neg	Neg	Neg	Neg	Neg	Pos	Neg	Neg	Neg
vIPV Type 1	3	Neg	Neg	Neg	Neg	Neg	Neg	Pos	Neg	Neg
vIPV Type 2	3	Neg	Neg	Neg	Neg	Neg	Neg	Neg	Pos	Neg
vIPV Type 3	3	Neg	Neg	Neg	Neg	Neg	Neg	Neg	Neg	Pos

 LC-MS method was able to identify all the antigen specific peptides in the antigen components. No detection of antigen specific peptides was observed in the antigen components where the corresponding antigen is absent.

Specificity Assessment for Products

Product Sample	# of Lot	D peptides	TT peptides	FHA peptides	FIM peptide	PT peptides	PRN peptides	IPV Type 1 peptide	IPV Type 2 peptide	IPV Type 3 peptide	PRP
DT	3	High Dose	Pos	N/Ap	N/Ap	N/Ap	Neg	N/Ap	N/Ap	N/Ap	N/Ap
Td	3	Low Dose	Pos	N/Ap	N/Ap	N/Ap	Neg	Neg	Neg	Neg	N/Ap
Td-IPV	3	Low Dose	Pos	N/Ap	N/Ap	N/Ap	Neg	Pos	Pos	Pos	N/Ap
Tdap	3	Low Dose	Pos	Pos	Pos	Pos	Pos	Neg	Neg	Neg	N/Ap
DTaP	3	High Dose	Pos	Pos	Pos	Pos	Pos	Neg	Neg	Neg	N/Ap
Tdap-IPV	3	Low Dose	Pos	Pos	Pos	Pos	Pos	Pos	Pos	Pos	N/Ap
DTaP-IPV	3	High Dose	Pos	Pos	Pos	Pos	Pos	Pos	Pos	Pos	Neg
DTaP-IPV-Hib	3	Pos	Pos	Pos	Pos	Pos	Pos	Pos	Pos	Pos	Pos

 LC-MS method is able to identify all acellular pertussis combination vaccines and each product can be differentiated from other similar vaccine products produced at Sanofi Pasteur Limited.

Test Transfer and Implementation

Regulatory Submissions and Implementation in QC

Submissions and Regulatory Approvals

• Receiving approval from Regulatory Angecies (FDA, Health Canada, and etc.) for implementing LC-MS identity test for releasing pertussis vaccines

Test Transfer

- Installation and qualification of LC-MS equipment in QC completed in June 2016
- 2 QC Analysts and Manager were trained
- Test Transfer to QC Chemistry for all Acel products completed in Oct 2016

Implementation

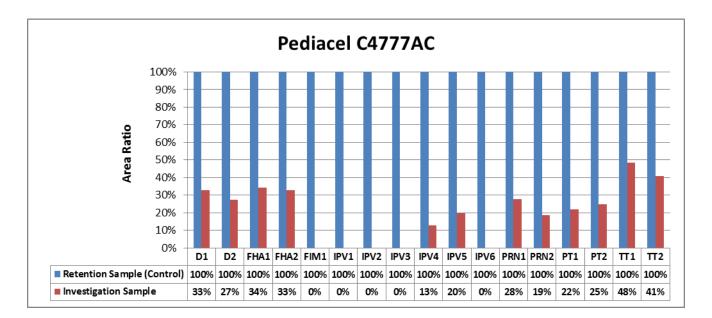
 Tests implemented in QC Chemistry for testing of Pediacel CA (Mar 2018), Quadracel/Pentacel US&CA (May 2018), Repevax CA (June 2018), Td US&CA (Sep 2018), Daptacel US&CA (Sep 2018), DT US (Nov 2018)

Example: Benefits after Implementing LC-MS ID Test for Pediacel in QC

Antigens to be detected in Pediacel	D peptides	TT peptides	FHA peptides	FIM peptide	PT peptides	PRN peptides	IPV Type 1 peptide	IPV Type 2 peptide	IPV Type 3 peptide
LC-MS Test Results	Pos	Pos	Pos	Pos	Pos	Pos	Pos	Pos	Pos

 A single LC-MS test identifies all 9 protein antigens which otherwise would require 6 QC ID tests to confirm the presence of each protein antigens in the vaccine

	ID tests required for Pediacel ID testing using old methods
1	Agar Identity of Diphtheria Toxoid and Tetanus Toxoid
2	Dot Blot Identity Test for detection of high or low dose of Diphtheria Toxoid (DT), high, low or no Filamentous Haemagglutinin (FHA)
3	Western Blot Identity Test for detection of FHA, FIM, PT and PRN
4	ELISA for Identity of Inactivated Poliomyelitis Vaccine (IPV) Type 1
5	ELISA for Identity of Inactivated Poliomyelitis Vaccine (IPV) Type 2
6	ELISA for Identity of Inactivated Poliomyelitis Vaccine (IPV) Type 3


Cost savings

- 73% reduction in labor cost
- Eliminating the use of more than 18 antibody reagents
- Reducing cost for the lifecycle management of 1 analytical procedure versus 6 procedures
- Reducing the invalidity rate to 0

Other Applications of LC-MS ID Test — Counterfeit Investigations

 LC-MS ID testing method were successfully used to test counterfeit samples and the corresponding retention samples to verify that the content within the returned Pediacel products (C4732AB and C4777AC) is not the correct Pediacel vaccine manufactured at Sanofi Pasteur Limited.

Comparison of the relative amount of antigen-specific peptides between the Pediacel C4777AC retention sample (Control) and investigation sample

Summary and Next Steps

- Successfully developed, validated, and transferred a LC-MS method to QC for replacing 6 ID tests of acellular pertussis combination vaccines
- It not only identifies all the protein antigens but also differentiates the products which have the same antigen but different dosage in a single LC-MS experiment

Benefits

- Efficiency: One LC-MS identity test replaces 6 QC identity tests affording reduced test cycle times
- Test Reliability: It has reduced invalidity rates to zero since implementation in March 2017
- Cost:
 - Save 73% labor cost
 - Eliminate the use of more than 18 antibody reagents associated with high costs
 - Reduce maintenance time and cost since only one instead of 6 procedures require life cycle management for SOP updating, reagent and equipment maintenance, training, re-validation, regulatory submission, etc.
- Greater customer assurance of data quality due to automation and test reliability

Next Steps

- Test transfer to other Sanofi Pasteur sites
 - Feasibility completed in 2017 and received ARC endorsement
 - Implementation of LC-MS ID tests in 2019 for
 - Hexaxim & Axim family to replace identity test by Luminex, Ouchterlony, etc. (VDR, MLE)
 - Shan5 & Shan6 to replace ELISAs and Agglutination (SHA)
 - Fluzone to replace Ouchterlony (SWF)

Michael Leach (AS) Matthew Balmer (AS) Sue Nelson (AS) Seeven Vydelingum (AS) Rob Maharajh (AS) Lois Yin (AS) Alex Listigovers (AS) Bruce Carpick (AS) Artur Pedyczak (AS)

Olivier Faure (QO QC) Rosa Nisman (QC Chemistry) Na Guan (QC Chemistry) Pilly Chan (QC Chemistry) Cynthia Ma (QC Chemistry) Kei He (QC Biostatistics) Meili Li (QO AE) Helen Sarantis (QO AE) Jim Yu (QO AE) Dave Jaipersad (QO VS) Tatjana Cvetkovic (QO VS) Shahneela Usman (QO VS) Peter Doherty (QO VS)

Maureen Barbalinardo (RA) Leanne Chinn (RA) Priya Persaud (RA)

William Zhu (IS) David McIntyre (IS) Henry Pan (IS)

Graham Phillips (IO) Reddy Donga (IO ENG)

THANK YOU

