Applications of Mass Spectral Libraries to Therapeutic Protein Analysis: From Simultaneous Assessment of Post-Translational Modification

Sites to Multi-Attribute Quality Control

Qian Dong, Yuxue Liang, Xinjian Yan, and Stephen E. Stein Mass Spectrometry Data Center National Institute of Standards and Technology (NIST) Gaithersburg, MD USA

September 18th, 2019 MASS SPEC 2019, CASSS

10/23/2019 12:00:56 PM

OUTLINE

- Challenges in MS bioanalysis: highly complex low abundance PTMs
- Methods to create spectral libraries with 1D and 2D high mass accuracy/high resolution MS data for deep coverage of major PTMs
- 3. Examples of Applications of the NISTmAb libraries to simultaneous detection of various peptides and modifications
- 4. Advantages of the spectral library search relative to conventional methods

Challenge in Mapping PTMs in mAbs by LC-MS/MS

- 1. PTMs are diverse and divergent (>30)
- 2. PTMs are low abundance species
- 3. Extensive distribution sites in mAbs
 - 55 degradation sites
 - 51 glycation sites
 - 33 oxidation sites

- 13 cysteine variant sites
- 66 amino acid substitution site
- 4. Heterogeneous glycosylation at a single site
 - 60 detectable glycans
- 5. Complex and unexpected fragmentation patterns
 - glycation, glycosylation, and disulfide linkage
- 6. Experiment-induced modifications
 - oxidation, deamidation, formylation

NISTMAD: First Publicly Available Reference Material for Biological Drug Manufacturers and Regulators

https://www-s.nist.gov/srmors/view_detail.cfm?srm=8671

10/23/2019 12:00:58 PM

□ Toward the goal of improving quality

bioanalysis measurements

- NIST released a humanized IgG1k reference mAb, NISTmAb, in 2016
- It is a common control reference mAb for originator and biosimilar alike

John Schiel and his team at NIST

Schiel JE, Davis DL, Borisov OV, editors. State-of-the-art and emerging technologies for therapeutic monoclonal antibody characterization. **Three volumes**. Washington, D.C.: American Chemical Society; 2015

It is the most widely characterized publicly available monoclonal antibody. Around 30 papers have been published since 2016

Spectral Libraries of NISTmAb for Simultaneously Analyzing **Multiple Posttranslational Modifications**

2018: **Tryptic peptide Spectral Library**

13,000 spectra 3,300 peptides 50% modified spectra spectral metadata

10/23/2019 12:00:58 PM

Single Protein Digest Libraries for In-Depth Bioanalysis

Improve Depth of Coverage in Single Protein Digests

A First Comprehensive Spectral Reference Library for **Characterization of Therapeutic Antibodies**

Around 13,000 high-quality tandem spectra of > 3,000 peptide ions

□ Validation by:

- accurate mass ٠
- differential elution ۲
- peptide classification ۲
- Over 50% spectra for modified peptide ions

10/23/2019 12:00:56 PM

Usage of Commonly Observed Analytical Artifacts

- Analytical analyses of biological samples produce many artifacts
 - 2. Database searches require a significant computational cost to consider all possible artifacts
 - 3. Artifacts represent a source of false positives if mis-identified
 - A spectral reference library readily facilitates the differentiation of true modifications from these artifacts
 - 5. Artifacts can be used for assessing the quality of the sample preparation

Artifacts unexpected miscleavage

- misalkylation
- Overalkylation
- method-induced modifications

semi-trypticcleavage

25 Modification Categories Identified in the NISTmAb Library

Modification	Mass difference	# Spectra	Origin	
Oxidation	15.9949	2482	in-sample, in-source, in-column or in-digestion	
N-linked glycosylated	delta mass * 60	1700	in-sample	
Deamidated	0.9840	996	in-sample or in-digestion	
Formyl	27.9949	483	in-digestion	
Hex	162.0528	656	in-sample or in-digestion	
GIn->pyro-Glu	-17.0265	291	in-sample or in-digestion	
Cation:Fe[III]	52.9115	60	in-source	
Glu->pyro-Glu	-18.0106	86	in-digestion	
Carbamidomethyl	57.0215	105	in-digestion	
Cation:Fe[II]	53.9193	43	in-source	
Carbamyl	43.0058	66	in-digestion	
Lys (transpeptidation)	128.0950	70	in-digestion	
Cation:Na	21.9819	37	in-source	
Lys loss (heavy chain)	-128.0950	72	in-sample	
Arg (transpeptidation)	156.1011	49	in-digestion	
Cation:Ca[II]	37.9469	29	in-source	
Cation:2Na	43.9639	22	in-source	
Carboxy	43.9898	23	in-digestion	
Dehydrated	-18.0106	36	in-source or in-digestion	
Pyro-carbamidomethyl	39.9949	17	in-digestion	
Ammonia-loss	-17.0265	15	in-sample or in-digestion	
Nitro	44.9851	9	in-source	
Acetyl	42.0106	5	in-sample or in-digestion	
Dioxidation	31.9898	9	in-sample or in-source	
Trioxidation	47.9847	1	in-sample or in-source	

10/23/2019 12:00:58 PM

Determination of N-Linked Glycopeptides by 1D and 2D LC–MS/MS Analyses

Table 1. Identified Glycopeptides in 1D and 2D Studies"

			1D studies		udies	_
	peptide sequences of glycosite Asn300	glycans	PepIDs	glycans	PepIDs	charge states
l	TKP RE EQY <u>N</u> STYR (M1)	30	73	60	91	2+, 3+, 4+
	EEQY <u>N</u> STYR (M0)	21	56	55	88	2+, 3+
	TKPREEQY <u>N</u> STYRVVSVLTVLHQDWLNGKEYK (M3)	10	23	13	27	4+, 5+, 6 +
	EEQY <u>N</u> STY RV VSVLTVLHQDWLNG KE YK (M2)	10	15	9	16	3+, 4+, 5+
	EEQY <u>N</u> STY RV VSVLTVLHQDWLNGK	7	9	8	10	3+, 4+
	TKP RE EQY <u>N</u> STY RV VSVLTVLHQDWLNGK	7	12	4	8	4+, 5+, 6+
	P RE EQY <u>N</u> STYR	3	3	4	4	3+

- Total 1,703 tandem spectra of 247 glycopeptides obtained from NISTmAb and Avastin, Enbrel, Humira, and Rituxan
- Total 81 unique glycan structures (NSO and CHO), including several in-source glycans

Dong, Q. Xinjian Yan, Yuxue Liang, and Stephen E. Stein. *Journal of Proteome Research* 2016 *15* (5), 1472-1486.

2D Studies Detected More Low Abundance NISTmAb Glycan Structures Than 1D Techniques

	Total·	32	32	76	07
6	Other minor glycans	7	8	26	💙 glycan
5	Galactosylated glycans	9	5	18	🔔 25 nev
4	Sialylated glycans with Neu5Gc	5	9	21	
3	Core-fucosylated triantennary glycans	4	3	4	
2	Core-fucosylated monoantennary glycans	4	4	4	
1	Core-fucosylated biantennary glycans	3	3	3	
Group	Glycan structure classification	Released glycan ²	1D LC-MS ¹ glycopeptide	2D LC-MS ¹ glycopeptide	
		Number			

- 1. Dong, Q. Xinjian Yan, Yuxue Liang, and Stephen E. Stein. *Journal of Proteome Research* 2016 15 (5), 1472-1486.
- 2. Prien, J. M. et al. The NISTmAb Case Study. Orthogonal Technologies for NISTmAb N-Glycan Structure Elucidation and Quantitation.

20-Fraction 2D-LC Separation of Glycopeptides from Peptides and Sialylated from Non-Sialylated Species

This greater 2D separation resulted in significant signal intensity enhancement comparing to those in the 1D study, especially for sialylated species.

A Complete Glycation Profile for the NISTmAb Based on 1D and 2D Studies

 glycation sites identified in NISTmAb

10/23/2019 12:00:58 PM

Lys 417 Lys 442 Lys 450

Results

- A total of 590 spectra of 92 glycated peptides identified by 1D and 2D LC-MS/MS analyses
- The glycation profile mapped 21/36 (58%) and 15/15 (100%) of glycation sites in the heavy and light chains of the NISTmAb

Observation of In-Sample, In-Column and In-Source Oxidation In Peptide Mapping Experiments

NIST

Significant Variations in Quantifying All 8 Methionine Sites in the NISTmAb Obtained From Four Separate Laboratories

Use of Conventional Database Search Programs to Identify Common Peptides and Modifications

The LC/MS analysis of a **HUMIRA (CHO)** tryptic digest. Humira was digested for 2 h after denaturing in 6 M guanidine at room temperature. Peptides and modifications identified in a HUMIRA tryptic digest by a search program MS-GF+

Use of the NISTmAb Spectral Library to Add a Variety of New and Difficult Peptide Identifications

10/23/2019 12:00:56 PM

MATERIAL MEASUREMENT LABORATORY

18

How to Use NIST Spectral Libraries

□ The libraries are provided in two formats:

- NIST MS library binary format
- text format (MSP file)
- The NISTmAb libraries of annotated mass spectra are freely available at: <u>https://chemdata.nist.gov/dokuwiki/doku.php?id=peptidew:cdownload</u>
- □ You can use MSP files with many software programs
- You can use two free software tools, the NIST MS Search and MSPepSearch, to search, browse, and compare the library in binary format

Integrating Library Search into Existing Data-Analysis Workflows

(1) Thermo Proteome Discovery

(2) Mascot Database Search

Use spectral libraries today

A recent report on the use of spectral libraries in proteomics identified challenges that could be hindering wider adoption of the method. We suggest that these supposed barriers simply aren't an issue when using Mascot Server.

• Integrating library search into existing workflows is difficult With Mascot Server, spectral library searching is integrated seamlessly from the search form through to the results report and data export. If you need to

NGT 10/23/2019 12:00:58 PM

Summary

- We welcome end-users of pharmaceutical companies and others to take advantage of this NIST reference mAb and its free comprehensive spectral libraries
- 2. The NISTmAb spectral library is invaluable in biotherapeutic analysis because of its comprehensive and unbiased matches of all classes of peptides and modifications
- 3. Library search typically exhibits faster, more sensitive and more reliable identification of low abundance peptides, including many hard-to identify modifications
- 4. Large numbers of modifications identified by the library can be used for monitoring critical quality attributes in MS-based daily routine analysis

Stephen Stein

Yuxue Liang

Eric Yan

Thank you!