

# Analyzing RNA Structure using Microfluidic Modulation Spectroscopy (MMS) and Measuring Structural Changes in Riboswitches



### About RedShift BioAnalytics, Inc.

- RedShiftBio<sup>®</sup>: Massachusetts-based biotech company backed by two of the largest life science instrumentation companies, one of which is Waters.
- MMS: <u>Microfluidic Modulation Spectroscopy</u>, a powerful new technology for characterizing biomolecules in solutions.
- Apollo & Aurora TX: Automated and high-throughput instruments for enhanced characterization and monitoring of biomolecules in their native state
- delta: Proprietary analytical software for both automated and streamlined data analysis.



### Growing List of Peer-Reviewed Publications





## AuroraTX – 2<sup>nd</sup> Generation System Powered By MMS

The One-Drop Protein Characterization Solution Precise, Automated, and Ultra-Sensitive Biomolecule Characterization

High Power Quantum Cascade Laser

Provides 30x sensitivity to detect small changes in structure over wide concentration ranges

> Fully Automated Sample Handling System

Reduces hands-on time and human error



TX upgrade offers thermal ramping capabilities and extended spectral range for RNA/DNA analysis.



**High Precision** Microfluidic Flow Cell

Enables extreme reproducibility and allows use of complex buffers



Simple Operation, Integrated touchscreen, and Advanced Analytics

Ease of use with minimal training and high-quality data

### Key Enhancements: Fast Analysis, Low Volume, High Resolution

## Microfluidic Modulation Spectroscopy (MMS)

- Unique microfluidics alternates sample and buffer in flow cell
  - The absorbance of the sample and buffer are alternately measured across the Amide I band
  - Differential Absorbance (DiffAU) is recorded
  - Rapid sample-buffer referencing without cell movement provides >98% system repeatability.







### Nucleic Acid IR Bands – What Does MMS Measure?



| Assignment                                              | Wave number (cm-1)                                            |
|---------------------------------------------------------|---------------------------------------------------------------|
| Base vibrations                                         | 1800-1500                                                     |
| Double-helical structures                               | 1673-1660 to 1689-1678                                        |
| Thermal denaturation                                    | 1696-1684, 1677-1653                                          |
| Triple-helical structures                               | 1800-1500                                                     |
| Base-sugar vibrations                                   | 1500-1250                                                     |
| Interaction involving the N7 sites of purines           | 1495-1476                                                     |
| Anti/syn conformation                                   | 1381-1369                                                     |
| Sugar conformation                                      | 1344-1328                                                     |
| Sugar-phosphate vibrations                              | 1250-1000                                                     |
| Backbone conformation, PO <sub>2</sub> -stretching band | B-form double helix ~1225<br>A-form ~1240<br>Z-form ~1215     |
| Sugar vibrations                                        | 1000-800                                                      |
| Sensitivity to sugar conformation                       | N-type sugars, 882-877, 865-<br>860<br>S-type sugars, 842-820 |
| Contribution from POP vibration                         | 840-800                                                       |

Biophysical Chemistry Banyay et al. (2003) A library of IR bands of nucleic acids in solution. Biophys Chem.

### Extended Range Building Blocks: Nucleosides MMS data

The nucleosides are the building blocks for RNA and DNA (we're showing A,U,C, and G, but we've also measured T!) and have signature peaks in the amide I band. Using these building blocks, we can predict what sequences will look like and compare to experimental data to observe base-pairing, Hoogsteen pairing, and other higher order structures like triple strands.



Bonds responsible for these absorption bands: C=O stretch C=C and C=N ring vibrations

### **REDSHIFT**Bio

### Nucleosides vs Polynucleotides



Bonds responsible for these absorption bands: C=O stretch (strong, 1640-1720 cm<sup>-1</sup>) C=C and C=N ring vibrations (weak, 1580-1630 cm<sup>-1</sup>)

### Poly(C): i-motif vs Monomer, Structure vs Identity



MMS detects unique spectral feature for i-motif due to C-C<sup>+</sup> base pairing

### Today's topic: riboswitches and ligand binding

- Riboswitch
  - mRNA regulatory domains that bind metabolites and modulate gene expression.
  - Acts at all levels of gene expression: transcription, splicing, translation
- Riboswitch-ligand binding
  - Serves as a feedback to control gene expression
  - Structural rearrangement on the RNA



Schematic showing a riboswitch that regulates transcription



### PreQ1 riboswitch: MMS data output



### PreQ1 riboswitch-ligand binding



### SAM-I Riboswitch Data



Riboswitches are small, well-folded RNA that bind tightly to small molecular ligands. When bound, the RNA undergoes conformational change that controls whether the riboswitch is active or inactive.

### Example: SAM-I riboswitch

- The SAM-I riboswitch is an RNA regulatory element in bacteria that terminates transcription in response to SAM binding.
- SAM binds the riboswitch with ~150 nM affinity (determined by SPR) to form a kinetically long-lived complex.
- Upon binding, SAM contacts many riboswitch bases and induces extensive conformational rearrangements in P4 and P1.

#### SAM-I 3D structure with SAM:



### SPR binding data from Arrakis Tx:



Binding-induced conformational changes in SAM-I:



*Riboswitch Figures:* Dussault AM, Dubé A, Jacques F, Grondin JP, Lafontaine DA. Ligand recognition and helical stacking formation are intimately linked in the SAM-I riboswitch regulatory mechanism. RNA. 2017 Oct;23(10) 1539-1551. doi:10.1261/rna.061796.117. PMID: 28701520; PMCID: PMC5602112.



### Dose-dependent spectral changes were observed upon titration of SAM into SAM-I

- Spectral changes were observed in the 1710, 1695, and 1607 cm-1 regions primarily corresponding to C and U residues.
- Required ~0.5 mg of RNA per spectrum compared to NMR, which would require roughly 1.5 mg to collect a 1D proton spectrum.
- RNA concentration was ~22 uM (0.67 mg/mL), so a KD was not determined due to significant free ligand depletion.



| _igand Concentration (µM) | % Repeatability | % Similarity |
|---------------------------|-----------------|--------------|
| 0                         | 96.6            | 100          |
| 1                         | 96.5            | 96.6         |
| 2                         | 96.2            | 96.5         |
| 4                         | 97.1            | 95.5         |
| 8                         | 96.6            | 94.6         |
| 16                        | 96.0            | 92.9         |
| 32                        | 96.8            | 92.7         |
| 64                        | 96.7            | 91.8         |

Spectral change in response to SAM titration





### SAM-I Riboswitch: Ligand Binding Study



There are clear peak shifts observed in MMS due to ligand binding and by running a titration series, we can see the change and plateau that can give an indication of apparent Kd.

## GC base pairing model RNA construct: CCGCGG self-complementary duplex



# AU base pairing model RNA construct: 1RNA (UUAUAUAUAUAA) self-complementary duplex



### Comparison of 1RNA A-U duplex vs CCGCGG duplex

### Absolute Spectra Comparison:



### Similarity Plot Comparison:



 <sup>1</sup>RNA 1.75 mg/mL (averaged)
 CCGCGG\_Dia.RNAmelt buffer (averaged)



### Comparison of 1RNA A-U duplex vs CCGCGG duplex



Similarity Plot Comparison:



 <sup>1</sup>RNA 1.75 mg/mL (averaged)
 CCGCGG Dia.RNAmelt buffer (averaged)



### MMS Is An Essential Part Of Your Biophysical Tool Kit

#### Microfluidic Modulation Spectroscopy

Automate IR technique compatible wide concentration range, adjuvants, buffers are additional excipients provides a fingerprint of HOS

#### Size Exclusion Chromatography

Size Exclusion Chromatography with advanced detection (MALS) provides molecular weight assessment of oligomeric species in a formulation.

#### Differential Scanning Calorimetry

Measure the conformational stability of a protein based on Melting point. Provides thermal fingerprint for similarity studies



#### **Dynamic Light Scattering**

Incumbent technology for particle size measurement of proteins, aggregation detection, and colloidal stability studies

#### Nuclear Magnetic Resonance

High-resolution structural and spatial information of the biomolecule in solution. The ultimate tool for solving the crystal structure in three dimensions.

#### **Isothermal Titration Calorimetry**

Solution based assessment of binding interactions, including protein-adjuvant interactions

### MMS Detects Structural Changes in RNA

|                                              | Pros                                                                                                 | Cons                                                                                             |
|----------------------------------------------|------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| MMS                                          | <ul> <li>Detect population-weighted nucleic<br/>acid base pairing/conformation</li> </ul>            | <ul> <li>Requires much more RNA than SPR, but<br/>much less than NMR or ITC (~0.7 mg)</li> </ul> |
| (multifluidic<br>modulation<br>spectroscopy) | <ul> <li>Can detect conformational changes<br/>to as small as 1% of the RNA<br/>structure</li> </ul> | <ul><li>Requires matched buffer</li><li>Due to significant ligand depletion effects,</li></ul>   |
| 1755-1580 cm <sup>-1</sup>                   | <ul> <li>No labeling requirement</li> </ul>                                                          | MMS has similar limitations to NMR for accurately measuring KDs (KD > 100 $\mu$ M)               |
|                                              | No RNA size limit                                                                                    | <ul> <li>May be very good for fragment-<br/>based drug discovery though!</li> </ul>              |





- MMS can detect structural changes in RNA due to changes in formulation and ligand binding
- MMS can detect differences between folded and unfolded RNA
- The individual nucleotides have unique spectra signatures
- We are in the process of assigning spectral regions to different RNA structural elements
- We can determine Tm's for RNA unfolding (data not shown)
- Come to our Symposium on Sept 19<sup>th</sup> New RNA data will be presented!

