

Radical Protein Footprinting in Stabilized Whole Blood

Joshua S. Sharp¹, Lyle Tobin¹, Sandeep K. Misra¹, Haolin Luo², and Lisa M. Jones²

FCOI Statement: J.S.S. and L.M.J. disclose a significant interest in GenNext Technologies, Inc., a growth-stage company seeking to commercialize benchtop HRPF to support the pharmaceutical industry

¹Department of BioMolecular Sciences, University of Mississippi, Oxford MS

²Department of Chemistry and Biochemistry, University of California San Diego, San Diego CA

Structural Proteomics by FPOP: From Test Tubes to Nematodes Solid

- Hydroxyl radical protein footprinting (HRPF) has long history in vitro
- In 2015, Espino Mali and Jones published the first example of FPOP in live cells
- Since been expanded to live nematodes and 3D cell cultures
- Mammalian tissues still out of reach due to strong tissue UV absorbance issues

Cultured Cells

Anal. Chem. 2015, 87, 7971-7978

Solid Tumor Spheroids

J. Am. Soc. Mass Spectrom. 2023, 34, 3, 417–425

Nematodes

Anal. Chem. 2019, 91, 10, 6577-6584

General HRPF Workflow

Peptide-Level Changes

High Resolution Epitope Mapping

Structural Impacts of PTMs

Allosteric Modulators

In-Blood FPOP

- Major potential impact in structural pharmacology
 - Anti-drug antibody interactions
 - Drug:target interactions
 - Drug:off-target interactions
 - Post-administration aggregation
- Major potential for structural proteomics in human fluids
 - Liquid tumor analysis
 - Biology and diseases of blood, lymph, CSF, urine, etc.

Anti-drug antibody prevalence in oncology checkpoint inhibitor therapy

mAb	EMA first approval	Structure	Isotype	Target	ADAs %
Atezolizumab	2017	Humanized	IgG1, kappa	PD-L1	30-54.1
Avelumab	2017	Fully human	IgG1, lambda	PD-L1	4.1-5.9
Cemiplimab	2019	Fully human	IgG4, kappa	PD-1	1.3
Durvalumab	2018	Engineered human	IgG1, kappa	PD-L1	1.7-6.6
Nivolumab	2015	Fully human	IgG4, kappa	PD-1	4.1-37.8
Pembrolizumab	2015	Humanized	IgG4, kappa	PD-1	0.7-2.5
Ipilimumab	2011	Fully human	IgG1, kappa	CTLA-4	1.1-26
Nivolumab + ipilimumab	_	_	_	_	23.8-37.8

Cancer Chemother. Pharmacol. (2022) 89:577-584

Catalase Activity and Inhibition

500 μL blood 80 μL 30% H₂O₂

5 mM HA 100 mM HA No inh. 25 mM HA 142 mM HA

 $500 \mu L blood$ $80 \mu L 2.5 M Na₂S₂O₈$

No inh.

■ Hydroxylamine ■ Aminoguanidine ■ TSC ■ 3AT

- Small amount of mild detergent captures bubbles made by catalase
- No amount of quencher tested completely inhibited blood catalase
- High concentrations of inhibitor changed blood characteristics markedly
- No measurable gas production with persulfate

In Vitro Persulfate Oxidation in Fox® System

- Fox Photolysis System can efficiently photoactivate persulfate to oxidize proteins, peptides and small molecules
- Real-time adenine dosimetry works *in vitro*; absorbance decreases as more radical is created, decreases as more radical is scavenged

New Persulfate Quench System

- Peroxide-based FPOP quenching with DMTU and methionine still had some peptides with elevated background oxidation
- Addition of 200 mM imidazole to quench eliminated background oxidation in these peptides
- Hydroquinone and GSH also seem to work, but have other issues

Protein in quench, 100 mM persulfate, 900V lamp Quench: 200 mM DMTU, 70 mM methionine, ± 200 mM imidazole

* = significant increase from no persulfate to –imidazole quench

Blood Cell Morphology in 200 mM Sodium Persulfate

- No increase in ghost cells observed
- Moderate increase in hypertonicity observed in In-Blood RPF conditions
- Gross morphological changes indistinguishable from addition of equivalent concentration of sodium chloride on footprinting timescale (<1 minute)

In-Blood FPOP System Design

Persulfate Mixing: Dye Imaging Test

- Two dyes: Red (1.3 μL/min) and Blue (13 μL/min)
- Ran each dye by itself and measured in capillary to set color RGB values
- Set RGB values for two dyes in ImageJ Colour Deconvolution2 plugin
- Measured distribution of red dye across cross-section of capillary at different disatances from mixing tee

Hemoglobin 900V Flash Voltage

Green: Alpha-globin regions detected not oxidized

Lt. Orange: Beta-globin regions detected not

oxidized

Yellow: Heme

In Blood

- 200 mM persulfate
- 900V lamp
- Murine blood

In Vitro

- 100 mM persulfate
- 900V lamp
- Bovine hemoglobin

Bovine Hemoglobin Oxidation per Peptide, In Vitro

< 0.2

0.2

Green: SPI regions detected not oxidized

Apolipoprotein IV

Current Work

- Automated fluidics handling
 - Custom software fluidics control
 - Automatic low-volume switching valve
 - Hardware integration with Fox system
- Dosimetry methods
- Proteomic complexity and dynamic range
- Workflows for targeted analysis from blood

Acknowledgements

Funding

R01 GM127267 NIGMS P20 GM130460 R35 GM1444324

Lyle Tobin

Aaron Sharp

Prof. Lisa M. Jones

Dr. Sandeep Misra

Darrienne Martin

Haolin Luo