Tuning the Higher Order Structure of ADCs by Traversing the Formulation Design Space

Sasha Ebrahimi Principal Investigator, GSK CASSS HOS September 12, 2024

Advances in the Chemical Design of Protein-Based Therapeutics have Led to Important Breakthroughs in Medicine

Samanta, D., Ebrahimi, S.B., Mirkin C.A., et al. J. Am. Chem. Soc. 2020, 142, 13350.

Antibody-Drug Conjugates (ADCs) are an Important Class of Medicine

REPORT

f y in 🍲 💊 🗷

Selective Destruction of Target Cells by Diphtheria Toxin Conjugated to Antibody Directed against Antigens on the Cells

FREDERICK L. MOOLTEN AND SIDNEY R. COOPERBAND

SCIENCE • 3 Jul 1970 • Vol 169,Issue 3940 • pp.68-70 • DOI: 10.1126/science.169.3940.68

± 9 97 1	¢ []	"	GET ACCESS		
Abstract					
Monkey-kidney cells bearing new surface antigens induced by infection with mumps virus were lysed selectively by diphtheria toxin conjugated to antibody against mumps antigens.					

What are the challenges associated with ADC development?

Structural Considerations for an IgG1-based ADC

Unconjugated (Naked) mAb

ADC

The ADC Exhibits High Turbidity at Low pH

25 mM sodium citrate, 154 mM NaCl, 75.6 g/L trehalose dihydrate, 0.05 mM EDTA disodium dihydrate, 0.02% (w/v) polysorbate 80 (PS80)

Turbidities observed were as high as 120 NTU at pH 5.2. This high turbidity is observed at a pH far from the pI (~8.7) of the ADC

Question to ask:

What is the mechanistic reason for this behavior?

High opalescence (turbidity) can signal the presence of reversible or irreversible aggregates that impact therapeutic efficacy or elicit *in vivo* toxicity.

Understanding and modulating opalescence and viscosity in a monoclonal antibody formulation

Branden A Salinas^{1,3}, Hasige A Sathish^{1,3,4}, Steven M Bishop⁴, Nick Harn⁴, John F Carpenter^{2,3}, and Theodore W Randolph^{1,3}

¹ Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado

² University of Colorado Health Sciences Center, Denver, Colorado

³ Center for Pharmaceutical Biotechnology, University of Colorado

⁴ MedImmune, LLC. Gaithersburg, MD 20878

pubs.acs.org/molecularpharmaceutics

Article

Liquid–Liquid Phase Separation in a Dual Variable Domain Immunoglobulin Protein Solution: Effect of Formulation Factors and Protein–Protein Interactions

Ashlesha S. Raut* and Devendra S. Kalonia*

ELSEVIEREven though not yet systemVolume 1488, 10 March 2017, PiELSEVIERELSEVIERIshed in which LLPS in antiboOne pH unit distant from p1 aDouvethylene glycol [3, 31]	ematically summarized, it has been shown often occurs at conditions close to the pl up to now just two studies have been pub- ody solutions was also observed more than at low ionic strength and in the absence of In general LUPS has been shown to be
Liquid-liquid phase separat turbidity and pressure during low pH elution process in Protein A chromatography	temperature (upper critical solution tem- ior) and lower ionic strength [2–5,7,8,14]. een LLPS and opalescence of antibody Opalescent Appearance of an IgG1 Antibody at High Concentrations and Its Relationship to Noncovalent Association
Haibin Luo ª 은 쯔, Nacole Lee ^b , Xiangyang Wang ^c , Yuling Li ª, Albert Schmelzer ^d , Alan K. Hunter Timothy Pabst ª, William K. Wang ª	r ^a , <u>Pharmaceutical Research</u> 21 , 1087–1093 (2004) Cite this article 745 Accesses 79 Citations 3 Altmetric Metrics

A Library of Formulations was Screened Towards Mechanistically Understanding ADC Behavior

Structure	рН	[NaCl] mM	[Trehalose] g/L	[PS80] (w/v) %	Antibody Concentration (mg/mL)	Buffering Agents
ADC	5.2, 5.9, 6.2, 7.0	0, 50, 100, 154	75.6, 189	0, 0.02, 0.1	80, 55, 27.5, 13.75, 6.88, 3.44, 1.72	25 mM Citrate 25 mM Histidine

Naked mAb also formulated at several conditions for comparison to the ADC

Taken together, this allows for investigating the impact of formulation conditions on the properties of the ADC

*This ADC is conventionally formulated in 25 mM sodium citrate, 75.6 g/L trehalose dihydrate, 0.05 mM EDTA disodium dihydrate, 0.02% (w/v) polysorbate 80 (PS80)

mAb Turbidity Does not Change with Varying pH at Constant NaCl Concentration

*All formulations 55 mg/mL Protein

mAb Turbidity Decreases with Increasing NaCl Concentration at Constant pH

ADC Turbidity Decreases with Increasing pH at Constant NaCl Concentration

ADC Turbidity Decreases with Increasing [NaCI] at Constant pH

ADC Turbidity is Substantially Higher than mAb Turbidity

ADC Turbidity Decreases with Decreasing ADC Concentration, with Non-Linear Behavior Observed In Certain Concentration Regimes

Non-Linear Behavior Suggests the Presence of Protein-Protein Interactions

ADC Melting Temperature Decreases Compared to the Naked mAb

Labels denote drug loading (i.e. DL0 corresponds to a drug loading of 0)

The modification of cysteine residues results in an additional melting transition corresponding to unfolding of the drug-conjugated Fab domain

ADC Melting Temperature can be Screened in High-Throughput Across Several Conditions

ADC Melting Temperature Changes by ~6°C Across the Formulation Conditions Conditions that Led to More Turbidity are those that have Lower Melting Temperatures

ADC Aggregation Temperature can be Screened in High-Throughput Across Several Conditions

ADC Aggregation Temperature Changes by ~10°C Across the Formulation Conditions Conditions that Led to More Turbidity are those that have Lower Aggregation Temperatures

ADC and mAb Aggregation Temperature Comparison with Changing pH

ADC Exhibits Lower Aggregation Temperature than the Naked mAb

ADC Exhibits More Negative Interaction Parameter than mAb

ADC Exhibits a Larger Degree of Protein-Protein Interactions Compared to the Naked mAb (i.e. lowering of colloidal stability upon drug conjugation)

Naked mAb Shows no Change in Amino Acid Modifications Across the Different Formulations

Sequence	Amino Acid Position (Number/Chain)	Modified Amino Acid	Modification	pH 5.2, 0 mM NaCl	pH 5.2, 100 mM NaCl	pH 7.0, 0 mM NaCl	pH 7.0, 100 mM NaCl
ASGGTFSNYWMHWVR	31/ Heavy Chain	N	Deamidation	0.1	0.1	0.1	0.1
CKVSNK	329/ Heavy Chain	N	Deamidation	0.5	0.4	0.4	0.6
GAIYDGYDVLDNWGQG TLVTVSSASTK	103/ Heavy Chain	D	Isomerization	3.1	3.2	3.4	3.4
SLSLSPGK	451/ Heavy Chain	к	C-terminal Lysine Cleavage	94.8	93.8	95.4	95.9
ASGGTFSNYWMHWVR	34/ Heavy Chain	М	Oxidation	0.2	0.2	0.2	0.3
DTLMISR	256/ Heavy Chain	м	Oxidation	2.2	2.6	2.5	2.5
QVQLVQSGAEVK	1/ Heavy Chain	Q	N-Terminal Pyroglutamylation	100	99.9	99.9	99.9

ADC Shows no Change in Amino Acid Modifications Across the Different Formulations

Sequence	Amino Acid Position (Number/Chain)	Modified Amino Acid	Modification	pH 5.2, 0 mM NaCl	pH 5.2, 100 mM NaCl	pH 7.0, 0 mM NaCl	pH 7.0, 100 mM NaCl
ASGGTFSNYWMHWVR	31/ Heavy Chain	N	Deamidation	0	0.1	0.1	0.1
CKVSNK	329/ Heavy Chain	N	Deamidation	0.9	0.4	0.5	0.8
GAIYDGYDVLDNWGQG TLVTVSSASTK	103/ Heavy Chain	D	Isomerization	4	3.4	3.5	4.8
SLSLSPGK	451/ Heavy Chain	к	C-terminal Lysine Cleavage	95.4	95.2	95.2	95.3
ASGGTFSNYWMHWVR	34/ Heavy Chain	М	Oxidation	0.8	1	1	1.5
DTLMISR	256/ Heavy Chain	м	Oxidation	3.6	3.5	3.1	3
QVQLVQSGAEVK	1/ Heavy Chain	Q	N-Terminal Pyroglutamylation	100	100	100	100

No Change in Secondary Structure is Observed Between the Naked mAb and ADC

GSK

No Change in Tertiary Structure is Observed Between the Naked mAb and ADC at pH 5.2

ADC versus Naked mAb Shows No Difference in High Molecular Weight Species

Experimental Conclusions

- 1. The highest turbidity is observed at a pH far away from the pI of the ADC (electrostatic contribution)
 - 2. Drug conjugation changes the stability of the ADC in comparison to the naked mAb
- 3. The ADC exhibits a larger degree of attractive protein-protein interactions in comparison to the naked mAb
 - 4. Lowering pH and [NaCI] increases the magnitude of attractive interactions
- 5. The presence of aggregation arising from factors such as differences in oxidation or deamidation profiles between the different structures is ruled out
 - 6. Experiments show the absence of significant unfolding in any formulation, confirming that the main secondary structure component of the antibody is intra-molecular β-sheet as expected for IgG1-based molecules
 - 7. No change in tertiary structure is observed for the protein in any formulation tested
 - 8. No change is observed in levels of soluble irreversible aggregates (<~0.1 μM) between the various formulations

Therefore, we hypothesized that the changing solution conditions lead to an increase in reversible electrostatic interactions between proteins with largely preserved secondary and tertiary structure

Computational modelling of the ADC Reveals Significant Increase in Histidine Charge from pH 7 to pH 5.2

- Surfaces of the heavy chains and light chains of the ADC are shown in gray and white, respectively;
- Solvent accessible histidine residues defined as predicted solvent exposure ≥ 10% are shown in blue surface;
- The payload is shown in stick representation

Significant increase in histidine charge from pH 7.0 to pH 5.2

Conclusions

- 1. Experimental and computational techniques can be used in concert to understand the mechanism for ADC behavior in solution
 - 2. The studies presented suggest the presence of intermolecular electrostatic interactions between ADC molecules, which drive the high turbidity observed
 - 3. Traversing a library of different solution conditions enables the finding of "hits" that lead to more "well behaved" ADC formulations

Importantly, the studies presented here constitute a set of general screens that can be conducted across a wide scope of ADCs to enhance their stability

Acknowledgements

Xuan Hong

James Ludlow

Dany Doucet

Renuka Thirumangalathu

Back-up Slides

Overlay of mAb Z-average Diameter

Overlay of ADC Z-average Diameter

Conditions with Increased Turbidity are those that Show Increased Diameter

Overlay of ADC and mAb Z-average Diameter

ADC Exhibits Larger Z-average Diameter Compared to Naked mAb

Turbidity Studies with Varying Trehalose Concentration

Turbidity Studies with Varying PS80 Concentration

Turbidity Studies with Changing Buffer

cIEF Results- mAb

cIEF Results- ADC

CD experiments show ADC spectral characteristics expected of an IgG1 molecule

CD Shows Subtle Differences in Tertiary Structure of ADC Between pH 5.2 and pH 5.9

CD Shows Subtle Differences in Tertiary Structure of Naked mAb Between pH 5.2 and pH 5.9

CD Shows Subtle Differences in Tertiary Structure Between Naked mAb and ADC at pH 5.9

