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Advances in the Chemical Design of Protein-Based Therapeutics
have Led to Important Breakthroughs in Medicine

ESTABLISHED CHEMICAL MODIFICATIONS

EMERGING CHEMICAL MODIFICATIONS
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Antibody-Drug Conjugates (ADCs) are an Important
Class of Medicine

Antigen Antibody

+ High homogeneous expression on tumour « High affinity and avidity for tumour antigen

« Low or no expression on healthy tissues + Chimeric or humanised to decrease immunogenicity
» High affinity and avidity for antibody recognition » Long half-life and high molecular weight

REPORT f ¥ in & % =

: v : Selective Destruction of Target Cells by Diphtheria
Toxin Conjugated to Antibody Directed against
Antigens on the Cells

Fab Fab FREDERICK L. MOOLTEN AND SIDNEY R. COOPERBAND

cyt.OtOXic payload SCIENCE - 3 Jul1970 + Vol 169,Issue 3940 - pp.68-70 - DOI: 10.1126/science.169.3940.68

» Highly potent agents—IC50
in subnanomolar range:

13 FDA Approved ADCs + Calicheamicin o 9 A O »
. Maytansine derivative - .
Fc (DM1 or DM4)
« Auristatin {monomethyl
o auristatin E or monomethyl Abstract
auristatin F)

+ Optimal DAR ‘=  Monkey-kidney cells bearing new surface antigens induced by infection with i ]
mumps virus were lysed selectively by diphtheria toxin conjugated to antibody
against mumps antigens.

Linker
« Stable in circulation
« Efficient release of payload at target site . .
+ Prevents premature release of payload at non-target tissue Wh at are the Ch al Ie ng es aSSOCIated Wlth
« Efficient linker technology ?
» Cleavable versus non-cleavable ADC development .
- » Site of conjugation
— « DAR affects drug distribution and pharmacokinetics
oo




Structural Considerations for an IgGl-based ADC

Unconjugated (Naked) mADb
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The ADC Exhibits High Turbidity at Low pH

ADC Turbidity (Opalescence) with Different pH
140.0 -

120.0 A Q..

l_\
o O
S O
o O

o)
o
o

.
.
.
®e
®e
e,
.......

Turbidity (NTU)

40.0 1

coes
.....
.....
.....
.....
.....
-----
......
.....
LX3

20.0 A

0.0

25 mM sodium citrate, 154 mM NacCl, 75.6 g/L trehalose dihydrate, 0.05 mM EDTA disodium dihydrate, 0.02% (w/v) polysorbate 80 (PS80)

Turbidities observed were as high as 120 NTU at pH 5.2. This high turbidity is observed at a pH far from the pl (~8.7)
of the ADC



Question to ask:

What is the mechanistic reason for this behavior?

High opalescence (turbidity) can signal the presence of reversible or irreversible aggregates that impact therapeutic
efficacy or elicit in vivo toxicity.



Understanding and modulating opalescence and viscosity in a (
monoclonal antibody formulation
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A Library of Formulations was Screened Towards
Mechanistically Understanding ADC Behavior

Antibody
Structure pH [NaCl] mM [Trehalose] g/L  [PS80] (w/v) %  Concentration Buffering Agents
(mg/mL)
80, 55, 27.5, :
ADC 52,59 6.2 7.0 0,50, 100,154 756, 189 0,0.02,0.1 13.75, 6.88, 3.44, 2> MM Citrate
172 25 mM Histidine

Naked mAb also formulated at several conditions for comparison to the ADC

Taken together, this allows for investigating the impact of formulation conditions on the properties of the ADC

B *This ADC is conventionally formulated in 25 mM sodium citrate, 75.6 g/L trehalose
s dihydrate, 0.05 mM EDTA disodium dihydrate, 0.02% (w/v) polysorbate 80 (PS80)



mADb Turbidity Does not Change with Varying pH
at Constant NaCl Concentration

mAb 0 mM NaCl Turbidity with Different pH mAb 50 mM NaCl Turbidity with Different pH
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MmADb Turbidity Decreases with Increasing NaCl
Concentration at Constant pH

mAb pH 5.2 Turbidity with Different [NaCl]
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ADC Turbidity Decreases with Increasing pH
at Constant NaCl Concentration

ADC 0 mM NacCl Turbidity with Different pH ADC 50 mM NaCl Turbidity with Different pH
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ADC Turbidity Decreases with Increasing [NaCl]
at Constant pH

ADC pH 5.9 Turbidity with Different [NacCl]
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ADC Turbidity is Substantially Higher than mADb
Turbidity

mAb and ADC Turbidity with Changing NaCl at mADb and ADC Turbidity with Changing pH at Various
i H NaCl
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ADC Turbidity Decreases with Decreasing ADC Concentration, with
Non-Linear Behavior Observed In Certain Concentration Regimes

ADC pH 6.2, 0 mM NaCl Turbidity with Different [ADC]
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Non-Linear Behavior Suggests the Presence of Protein-Protein Interactions



ADC Melting Temperature Decreases Compared

tojhe Naked mAbm x%} %

250
g S g
g 150 815
_— = —
o = o
< 100 % £ 100
= & h-1
U 50 . U 50
0 0 s — -
55 65 75 85 95 55 65 75 85 95
Temperature (C) Temperature (C) Temperature (C)
250 250 250
200 . 200 200
2 DL4b = . =
2 150 =04 g 150 DLG 2150
?c - —DLO '?" ol —DLU :—; -
(_.:> 100 %NU (éwu
= e 5
O 5 < & O 5
0 O 0
65 75 85 95 55 R5 75 85 95 65 75 85 )5
Temperature (C) Temperature (C) Temperature (C)

Labels denote drug loading (i.e. DLO corresponds to a drug loading of 0)
The modification of cysteine residues results in an additional melting transition corresponding to unfolding of the drug-conjugated Fab
domain



ADC Melting Temperature can be Screened in High-
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ADC Melting Temperature Changes by ~6°C Across the Formulation Conditions
Conditions that Led to More Turbidity are those that have Lower Melting Temperatures




ADC Aggregation Temperature can be Screened
In High-Throughput Across Several Conditions

ADC Aggregation Temperature with Changing pH

at Various [NaCl]
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ADC Aggregation Temperature Changes by ~10°C Across the Formulation Conditions
Conditions that Led to More Turbidity are those that have Lower Aggregation Temperatures



ADC and mAb Aggregation Temperature
Comparison with Changing pH

mAb and ADC Aggregation Temperature
with Changing pH at 0 mM NaCl
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ADC Exhibits Lower Aggregation Temperature than the Naked mADb




ADC Exhibits More Negative Interaction Parameter than mADb

mAb and ADC Interaction Parameter with
Changing pH and [NaCl
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ADC Exhibits a Larger Degree of Protein-Protein Interactions Compared to the Naked mAb (i.e. lowering of
colloidal stability upon drug conjugation)



Naked mAb Shows no Change in Amino Acid Modifications
Across the Different Formulations

Amino Acid Position

Sequence (Number/Chain) Modified Amino Acid Modification pH 5.2, 0 mM NaCl pH 5.2, 100 mM NacCl pH 7.0, 0 mM NaCl pH 7.0, 100 mM NacCl
ASGGTFSNYWMHWVR 31/ Heavy Chain N Deamidation 0.1 0.1 0.1 0.1
CKVSNK 329/ Heavy Chain N Deamidation 0.5 0.4 0.4 0.6
GAIYF?_(\;/¥5\S/EES¥Y<GQG 103/ Heavy Chain D Isomerization 3.1 3.2 3.4 3.4
SLSLSPGK 451/ Heavy Chain K C'teETeizs;;ZSi”e 94.8 93.8 95.4 95.9
ASGGTFSNYWMHWVR 34/ Heavy Chain M Oxidation 0.2 0.2 0.2 0.3
DTLMISR 256/ Heavy Chain M Oxidation 2.2 2.6 25 2.5
QVOQLVQSGAEVK 1/ Heavy Chain Q NNzl 100 99.9 99.9 99.9

Pyroglutamylation




ADC Shows no Change in Amino Acid Modifications Across
the Different Formulations

Amino Acid Position

Sequence (Number/Chain) Modified Amino Acid Modification pH 5.2, 0 mM NaCl pH 5.2, 100 mM NaCl pH 7.0, 0 mM NacCl pH 7.0, 200 mM NacCl
ASGGTFSNYWMHWVR 31/ Heavy Chain N Deamidation 0 0.1 0.1 0.1
CKVSNK 329/ Heavy Chain N Deamidation 0.9 0.4 0.5 0.8
GAIYF?_(\;/¥5\S/EES¥Y<GQG 103/ Heavy Chain D Isomerization 4 3.4 3.5 4.8
SLSLSPGK 451/ Heavy Chain K C'terCT;gj;;fi”e 95.4 95.2 95.2 95.3
ASGGTFSNYWMHWVR 34/ Heavy Chain M Oxidation 0.8 1 1 15

DTLMISR 256/ Heavy Chain M Oxidation 3.6 3.5 3.1 3

QVOLVQSGAEVK 1/ Heavy Chain Q ALY 100 100 100 100

Pyroglutamylation




No Change in Secondary Structure is Observed Between
the Naked mAb and ADC
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No Change in Tertiary Structure is Observed Between the
Naked mAb and ADC at pH 5.2
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ADC versus Naked mAb Shows No Difference in High
Molecular Weight Species

ADC versus Naked mAb High Molecular Weight Species
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Experimental Conclusions

1. The highest turbidity is observed at a pH far away from the pl of the ADC (electrostatic contribution)
2. Drug conjugation changes the stability of the ADC in comparison to the naked mADb
3. The ADC exhibits a larger degree of attractive protein-protein interactions in comparison to the naked mAb
4. Lowering pH and [NaCl] increases the magnitude of attractive interactions

5. The presence of aggregation arising from factors such as differences in oxidation or deamidation profiles
between the different structures is ruled out

6. Experiments show the absence of significant unfolding in any formulation, confirming that the main
secondary structure component of the antibody is intra-molecular B-sheet as expected for IgG1l-based
molecules

7. No change in tertiary structure is observed for the protein in any formulation tested

8. No change is observed in levels of soluble irreversible aggregates (<~0.1 uM) between the various
formulations

Therefore, we hypothesized that the changing solution conditions lead to an increase in reversible
electrostatic interactions between proteins with largely preserved secondary and tertiary structure



e Surfaces of the

heavy chains and
light chains of the
ADC are shown in
gray and white,
respectively;

* Solvent accessible

histidine residues
defined as
predicted solvent
exposure = 10%
are shown in blue
surface;

* The payload is

shown in stick
representation
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Conclusions

1. Experimental and computational techniques can be used in concert to understand the mechanism for ADC
behavior in solution

2. The studies presented suggest the presence of intermolecular electrostatic interactions between ADC
molecules, which drive the high turbidity observed

3. Traversing a library of different solution conditions enables the finding of “hits” that lead to more “well
behaved” ADC formulations

Importantly, the studies presented here constitute a set of general screens that can be conducted across a
wide scope of ADCs to enhance their stability
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Overlay of mAb Z-average Diameter
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Overlay of ADC Z-average Diameter

Hydrodyamic Diameter (nm)
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Overlay of ADC and mAb Z-average Diameter

mAb Versus ADC Hydrodynamic Diameter
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Turbidity Studies with Varying Trehalose

C tration
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Turbidity Studies with Varying PS80

ADC pH 5.9 Turbidity with Varying PS80 ADC pH 6.2 Turbidity with Varying PS80
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Turbidity Studies with Changing Buffer

ADC pH 5.9 Turbidity in Histidine Buffer versus Citrate Buffer
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ClEF Results- mAD
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CIEF Results- ADC
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CD experiments show ADC spectral characteristics
expected of an IgG1 molecule

401 pH5.9,0 mM NaCl

20 A

0 A

-20 A

-40 -

-60 A

-80 A

CD MRE 6[degecm?sdmol-!]

[N
o
o

-120 -

-140 -

-160

250 260 270 280 290 300 310 320 330 340 350
Wavelength (nm)



CD Shows Subtle Differences in Tertiary Structure of
ADC Between pH 5.2 and pH 5.9
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CD Shows Subtle Differences in Tertiary Structure of
Naked mAb Between pH 5.2 and pH 5.9
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CD Shows Subtle Differences in Tertiary Structure
Between Naked mAb and ADC at pH 5.9
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