

Regulatory Perspectives on Structural Characterization of Gene Therapy Products

Andrew Byrnes, Ph.D. Director, Division of Gene Therapy 1 Office of Gene Therapy Office of Therapeutic Products, FDA CBER

September 11, 2024

Overview of Cell and Gene Therapy Products

Full and empty adeno-associated virus (AAV) capsids

Deamidation of AAV capsid proteins

Diversity of products regulated by CBER's Office of Therapeutic Products

Gene therapies (GT)

Ex vivo genetically modified cells

Non-viral vectors (e.g., plasmids)

Replication-deficient viral vectors (e.g., adenovirus, adeno-associated virus, lentivirus)

Replication-competent viral vectors (e.g., measles, adenovirus, vaccinia)

Microbial vectors (e.g., Listeria, Salmonella)

Stem cells/stem cell-derived

Adult (e.g., hematopoietic, neural, cardiac, adipose, mesenchymal) Perinatal (e.g., placental, umbilical cord blood)

Fetal (e.g., neural)

Embryonic

Induced pluripotent stem cells (iPSCs)

Products for xenotransplantation

Functionally mature/differentiated cells (e.g., retinal pigment epithelial cells, pancreatic islets, chondrocytes, keratinocytes)

Combination products

Engineered tissues/organs

Therapeutic vaccines and other antigen-specific active immunotherapies

Blood- and Plasma-derived products

Coagulation factors Fibrin sealants Fibrinogen Thrombin Plasminogen Immune globulins Anti-toxins Venom antisera for scorpions, snakes, and spiders

Devices

Tissues

FDA

Cell and gene therapies: new INDs per year Excluding expanded access

FDA-approved cellular and gene therapy products

Full list:

https://www.fda.gov/vaccines-blood-biologics/cellular-gene-therapy-products/approved-cellular-and-gene-therapy-products

Examples:

Luxturna – AAV vector
Imlygic – oncolytic HSV
Adstiladrin – adenovirus vector
Vyjuvec – HSV vector
Kymriah – CAR T cell
Zynteglo – hematopoietic stem cell gene therapy
Casgevy – genome-edited hematopoietic stem cell gene therapy
Hemacord – hematopoietic progenitor cells from cord blood
Stratagraft – allogeneic cultured keratinocytes and fibroblasts in bovine collagen
Lantidra – allogeneic pancreatic islets
Amtagvi – tumor-derived autologous T cell immunotherapy

Adeno-associated virus (AAV) vectors

Protein capsid

- 25 nm diameter protein shell, 3.8 MDa
- Just 3 proteins, no lipids
- A variety of post-translational modifications
 - Deamidation, phosphorylation, N-terminal truncation, others

DNA genome

- Single-stranded DNA genome, up to 4.7 kB
 - For very short genes, AAV vectors can be designed to form a half-length "self-complementary" dsDNA genome
 - For long genes, there are some clever ways to split into 2 or 3 vectors
- All viral genes are deleted and replaced with a transgene cassette AAV vectors cannot replicate
- Inefficient genome packaging into capsids
 - High percentage of empty AAV capsids, with no DNA inside
 - Some capsids contain truncated genomes, host cell DNA, or plasmid DNA

FULL AND EMPTY AAV CAPSIDS

The vast majority of AAV capsids are empty – no DNA inside

Most manufacturing methods include some removal of empty capsids

Potential for empty capsids to interfere with cell-based assays

AAV capsids (both full and empty) can be toxic in large amounts

Short-term toxicities due to complement activation

Thrombotic microangiopathy, a few days after administration

Medium-term toxicities due to T cell responses against capsid proteins Hepatotoxicity, including liver failure, a few weeks after administration

These toxicities have been very difficult to model in animals And unpredictable manifestation in clinical trials

Which physical properties of capsids can be exploited to improve AAV capsid purity?

Density – separate using ultracentrifugation Cesium chloride or iodixanol density gradients Extremely efficient separation Can remove empty capsids almost completely

Challenging to automate and scale up

Charge – separate using anion exchange chromatography DNA-containing capsids have slightly different surface charge Chromatography is a familiar technology, and easy to automate But separation is inefficient, especially at large scale Diffusion of AAV vectors is slow, so best to use methods that rely on convective mass transfer Monoliths and membrane absorbers, instead of resins

Separation parameters need to be fine-tuned and tightly controlled for each product Full and empty capsid pl differences are very small – need shallow elution gradients FDA

Impurities should be identified, controlled, and ideally removed

FDA advisory committee meeting in September 2021 to discuss the safety of AAV gene therapies

https://www.fda.gov/advisory-committees/advisory-committee-calendar/cellular-tissue-and-gene-therapies-advisory-committee-september-2-3-2021-meeting-announcement

Currently, there is no regulatory limit for empty capsids

Different products have vast differences in dose, route of administration, capsid serotype properties Many AAV products have substantial amounts of empty capsids, without undue toxicity Not possible to predict safe levels of empty capsids before starting clinical studies

Therefore, regulatory focus is on characterizing and controlling empty capsids

Different lots of a product should have consistent impurity profiles

Empty capsids

Non-vector DNA inside capsids (host cell DNA, plasmid DNA)

Lot release assays should have adequate performance to quantify impurities

Manufacturing processes should be designed to consistently clear impurities

After manufacturing process changes, the product should retain a similar (or better) impurity profile Scale up, changes to cells, chromatography changes, etc.

Analytical methods for empty capsids

- Transmission electron microscopy
- Cryo-electron microscopy
- A260/A280 absorbance
- Ratio of capsids (e.g., ELISA) to genomes (e.g., qPCR)
- Anion exchange chromatography
- Analytical ultracentrifugation
- Charge-detection mass spectrometry
- Mass photometry

These techniques can

 distinguish among full, empty, and partially-full capsids

Partially-full capsids

AUC is the most widely-used technique for resolving partially-full capsids

Typical AAV vector with ssDNA genome full empty 92S Normalized C(S) 0.8 62S 0.6 0.4 IF (interferometry) 0.2 0 50 100 150 0

Sedimentation Coefficient

Analytical Ultracentrifugation as an Approach to Characterize Recombinant Adeno-Associated Viral Vectors

Brenda Burnham, Shelley Nass, Elton Kong, MaryEllen Mattingly, Denise Woodcock, Antonius Song, Samuel Wadsworth,[†] Seng H. Cheng, Abraham Scaria, and Catherine R. O'Riordan^{*}

Gene Therapy, Genzyme, a Sanofi Company, Framingham, Massachusetts.

HUMAN GENE THERAPY METHODS, VOLUME 26 NUMBER 6 © 2015 by Mary Ann Liebert, Inc.

Typical self-complementary AAV vector with dsDNA genome

AAV vectors are heterogeneous

Most capsids are empty

Some capsids contain full vector genomes

Self-complementary AAV vectors can have substantial percentages of partially-full capsid

Some capsids contain host cell DNA or plasmid DNA

Capsids that do not contain full genomes are impurities

When possible, use purification methods that reduce empty capsids

Quantitate and control capsids forms and DNA impurities in capsids

DEAMIDATION OF AAV CAPSID PROTEINS

Protein deamidation and AAV vectors Decreased potency

Amide group of an asparagine (or a glutamine) side chain is lost after nucleophilic attack from an adjacent main-chain amide

The intermediate succinimidyl undergoes hydrolysis

Results in amino acid change from asparagine to aspartic acid or isoaspartic acid (1:3)

Or less frequently: from glutamine to glutamic acid or pyroglutamic acid

More likely when Asparagine is followed by Glycine (NG sites)

Giles et al. (2018) *Deamidation of Amino Acids on the Surface of Adeno-Associated Virus Capsids Leads to Charge Heterogeneity and Altered Vector Function.* Mol. Ther. 26:2848

Ronit Mazor laboratory at FDA CBER

What impact does deamidation have on the immunogenicity of AAV vectors?

FDA

Immune responses to AAV vectors

Protein deamidation and AAV vectors Altered human T cell response to capsid

Mazor lab: Bing et al. (2022) *Differential T cell immune responses to deamidated adeno-associated virus vector.* Mol. Ther. Meth. Clin. Devel. 24:255

Protein deamidation and AAV vectors Altered human T cell response to capsid

Altered T cell response after substituting Asn with Asp / iso-Asp in an AAV9 capsid peptide

This particular donor's T cells show:

- Higher response with aspartate in peptide
- Reduced response with isoaspartate

Mazor lab: Bing et al. (2022) Differential T cell immune responses to deamidated adeno-associated virus vector. Mol. Ther. Meth. Clin. Devel. 24:255

Protein deamidation and AAV vectors

Deamidation increases T cell responses in some donors, decreases in others

Mazor lab: Bing et al. (2022) *Differential T cell immune responses to deamidated adeno-associated virus vector.* Mol. Ther. Meth. Clin. Devel. 24:255

Protein deamidation and AAV vectors

High level of deamidation in AAV vectors

More deamidation over time during storage Residue-dependent variability

Deamidation may decrease AAV vector activity

Deamidation may increase or decrease the immunogenicity of AAV vectors

T cell assays that do not include deamidated peptides may underestimate T cell responses to vectors

AAV vectors have complex heterogeneity

- Full, empty, and partial capsids
 - Empty capsids have no activity, need to be controlled
- Post-translational modifications
 - The impact of PTMs on AAV vector quality is not completely understood PTMs may affect vector activity and immunogenicity

We recommend:

Develop manufacturing processes that yield vectors with consistent impurity profiles

Develop assays to quantitate and control capsid forms

Characterize post-translational modifications and seek to understand their impact on product quality

Contact Information

Andrew Byrnes

Andrew.Byrnes@fda.hhs.gov

• Regulatory Questions:

OTP Main Line – 240 402 0685 Email: OTPRPMS@fda.hhs.gov

• OTP (OTAT) Learn Webinar Series:

http://www.fda.gov/BiologicsBloodVaccines/NewsEvents/ucm232821.htm

- CBER website: <u>www.fda.gov/BiologicsBloodVaccines/default.htm</u>
- **Phone:** 1-800-835-4709 or 240-402-8010
- Consumer Affairs Branch: <u>ocod@fda.hhs.gov</u>
- Manufacturers Assistance and Technical Training Branch: <u>industry.biologics@fda.gov</u>
- Follow us on Twitter: https://www.twitter.com/fdacber

