Structure and Dynamics of a Site-Specific Labeled Human Fc Fragment with Tuned Effector Functions

CASSS Conference on Protein Higher Order Structure San Mateo, California

Travis Gallagher
National Institute of Standards and Technology
Biomolecular Measurements Division
10 April, 2019

Evolution of Antibody-Based Medicines

Top 10 Drugs by Sales for 2017, \$85 Billion: Seven are Biologics, Six are mAbs

Product	2017 Sales	2017 vs 2016	Use	Туре
Humira (Adalimumab)	\$18,427 M	14.6%	Anti- inflammatory	mAb
Rituxan (Rituximab)	\$9,238 M	2.0%	Anti-Cancer	mAb
Revlimid (Lenalidomide)	\$8,187 M	17.4%	Anti-Cancer	Small molecule
Enbrel (Etanercept)	\$7,885 M	-11.1%	Autoimmune diseases	Protein/lgG
Herceptin (Trastuzumab)	\$7,441 M	3.4%	Anti-Cancer	mAb
Eliquis (Apixaban)	\$7,395 M	46.3%	Anticoagulant	Small molecule
Remicade (Infliximab)	\$7,152 M	-13.1%	Autoimmune diseases	mAb
Avastin (Bevacizumab)	\$7,096 M	-1.4%	Anti-Cancer	mAb
Xarelto (Rivaroxaban)	\$6,589 M	11.3%	Anticoagulant	Small molecule
Eylea (aflibercept)	\$6,034 M	9.4%	Macular degeneration	Fusion protein

Quality control and reproducibility → need for data and standards → NIST mAb

Antibody-Drug Conjugates

Where to attach?

Trend is toward...

- *carefully chosen specific site(s)
- *protected locations
- *carefully controlled conjugation

Structure of this Talk

- 1. Intro to ADC insertion mutant Fc_C239i
- 2. Fc_C239i crystal structures
- 3. Dynamics
- 4. Receptor interactions
- 5. Conclusions

-- hinge -- Fc...
Fab......CPPCPAPELLGGPSVF...

Cys inserted after Ser239

Cys inserted here, after Ser 239

Crystals of the Fc fragment with the C239i mutation.

Diffraction statistics for Fc wt and two Fc_239i adduct structures.

All are in space group 19 with unit cell approximately 50, 80, 135 Å

	#non-H atoms resolution		Rsym refined R/Rf		rmsd-ideal
Fc wt(5vgp)	3765	2.1 A	0.09	0.20/0.25	0.013
Fc239i+cys	3652	2.3 A	0.07	0.22/0.27	0.014
Fc239i+malein	า 3628	2.6 A	0.10	0.26/0.31	0.010

How does the inserted Cys affect the local structure?

The extra Cys structurally replaces Ser239, forcing 239 and 240 upward and extending the hinge by 1 residue.

Adducts attached to Cys239i:

1. extra Cysteine

2. Maleimide

Local electrostatics may affect linker stability

Structure of this Talk

- 1. Introduce Fc_C239i -> Done
- 2. Crystal structures of proto-linker adducts -> Done
- 3. Dynamics
- 4. Receptor interactions
- 5. Conclusions

Hydrogen-Deuterium Exchange

HDX coverage and heat maps

Two ways to measure dynamics in Fc_239i (both are normalized to wild-type)

Dynamics by HDX

Dynamics by diffraction

Receptor Interactions FcRn, FcR-gamma, C1q

Extensive measurements reported in 2017 paper:

receptor: FcRn FcR-gamma C1q binding: + - -

Wild-type Fc binding to FcRn (PDB: 4N0U)

Model of Fc_239i binding to FcRn

The binding interface is far from the mutation.

Wild type Fc in complex with FcRIIIa complex (PDB: 3AY4

Fc_239i is sterically blocked from binding to FcRIII.

Conclusions

- 1. The ADC-engineered Fc fragment Fc_C239i crystal structure shows the molecular basis for several observed favorable properties, including:
 - * general protein stability and conjugate stability (sheltered site)
 - * non binding of Fc-gamma receptors, so that ADCC is not induced
 - * normal binding to FcRn
- 2. Key features appear to be:
 - * the sheltered-but-accessible conjugation site near to the FcR interface
 - * the specific secondary structure at the start of the Fc: ...GGPS(C)...
- 3. Structure at 2.3 Angstrom resolution is deposited as 6xxx.pdb

Structure and Dynamics of a Site-Specific Labeled Human Fc Fragment with Tuned Effector Functions

Collaborators:

Chris McCullough MedImmune/NIST

Joomi Ahn MedImmune

Robert Brinson NIST

Nazzareno Dimasi MedImmune

