Using High-Throughput High-Resolution Cryo-EM to Address Challenging Questions in Structural Biology

Scott M. Stagg Institute of Molecular Biophysics Department of Chemistry and Biochemistry Florida State University

Research in the Stagg lab

Structural biology of vesicle trafficking

Tools for high-thoughput high-resolution cryo-EM

NATURE | NEWS FEATURE

< 🛛 🔒

The revolution will not be crystallized: a new method sweeps through structural biology

Move over X-ray crystallography. Cryo-electron microscopy is kicking up a storm by revealing the hidden machinery of the cell.

Ewen Callaway

09 September 2015

Illustration by Viktor Koen

Tools for high-thoughput highresolution cryo-EM

Single particle reconstruction

Alignment, Classification, Angular assignment

- ~1000 images (inherently atomic resolution)
- 10⁴-10⁶ particles

3D reconstruction

Electron Tomography

Grünewald et. al., Biophys Chem. 2003

Yahav et. al., Curr Op Struct Biol. 2011

Resolution depends on # of particles

The FSU EM pipeline

- Leginon/Appion pipeline facilitates highthroughput data collection
 - 85 projects
 - Dozens of users
 - ~2,000,000 images
 - ~50,000,000 particles
 - Backbone for the NIH
 U24 SECM4 consortium

Sample preparation is the next frontier in 3DEM

 The quality of sample preparation for TEM varies widely from researcher to researcher and sample to sample

Microfluidics for reproducible specimen preparation

Mukhitov et al., 2016

Structural biology of vesicle trafficking

Do all the things

COPII proteins form vesicles from the ER

• Sar1 - regulatory GTPase

—22 kDa

- Sec23/24
 - –Sec23 Sar1 GTPase activating protein (GAP)

• 80 kDa

- -Sec24 cargo recognition
 - 120 kDa
- Sec13/31 promotes coat assembly
 - -Sec13 35kDa
 - –Sec31 135 kDa

Sec13/31 assembles into a cage

Cage diameter determined by β angle

$$\alpha = 60$$

$$\beta = 90, 108$$

Attempt at high resolution COPII cages

Data went nowhere!

Tomography of COPII cages

After mild fixation, cages are much better preserved

Before

After GRAFIX

Fitting Homology Model to EM density

Resolution: 12 Å (FSC 0.143)

Predicted interactions

HDX-MS mapped on Sec13/31

HDX-MS identifies conformational changes and interacting loops

HDX-MS identifies interacting loops

Modeling unveils a hinge between Sec13 and Sec31

Modeling is validated by HDX-MS

Structural biology of the gene therapy vector adeno-associated virus

AAV-DJ/Arixtra at 2.8 Å resolution

AAV with newly discovered protein receptor AAVR

- In 2016, Chapman and Carette labs determined a novel protein receptor that was critical for AAV uptake
 - Named AAVR

The structure of AAV/AAVR

AAVR tomography

AAVR tomograms

AAVR is clearly visible from the raw tomogram (red arrow)

Subvolume averaging of AAVR

~1600 individual AAVR particles aligned and averaged – no receptor density visible due to low occupancy

AAVR heterogeneity

Modeling AAVR

~200 subvolumes averaged

AAVR binds outside of threefold spike

AAVR flexibility

Different subvolume reconstructions demonstrate the range of AAVR flexibility.

AAVR conclusions

- AAVR saturates AAV with ~3 molecules per virion
- Flexibility and low occupancy too extreme for single particle reconstruction
- Tomography reveals binding site for AAVR
- AAVR is highly flexible
 - Flexibility is likely related to its function

Acknowledgements

- Stagg Lab
 - John Spear
 - Alex Noble
 - Jason O'Donnell
 - Hanaa Hariri
 - Nilakshee Bhattacharya
 - Michael Spilman
 - Guiqing Hu
- EM Tools
 - Leginon/Appion in collaboration with NRAMM
 - Bridget Carragher and Clint Potter

– FSU HPC

- Paul Van der Mark
- Donald Shrum
- Stain device
 - Mike Roper Lab
 - Nick Muckhitov
- COPII
 - Marshall Lab
 - Qian Zhang
- AAV
 - Michael Chapman Lab
 - Qing Xie
 - Nancy Meyer
 - Thomas Lerch

Supported by:

National Institutes of Health, FSU GAP grant