DENALI Considerations for Developing Oligonucleotide Transport Vehicle Conjugates

Amelia Adams CASSS CMC Strategy Forum July 16, 2024

DISCLAIMER

I am a full-time employee at Denali Therapeutics and own Denali shares.

DEUVLI

DENALI OTV PLATFORM

JEUVI

TV ENABLES MULTIPLE MODALITIES FOR BRAIN DELIVERY

Denali is focused on tackling neurodegenerative diseases leveraging the transport vehicle platform to deliver therapies across the blood-brain barrier.

©2024 Denali Therapeutics Inc.

OLIGONUCLEOTIDES AS THERAPEUTICS

Oligonucleotide therapeutics can specifically modify gene expression through gene knockdown, gene regulation, or modulating splicing.

https://www.idtdna.com/pages/products/functional-genomics/antisense-oligos; Roberts, T.C., et al. Nature Reviews Drug Discovery (2020)

SOLVING THE BBB CHALLENGE FOR BRAIN DELIVERY OF BIOTHERAPEUTICS

LIMITED BIODISTRIBUTION WITH INTRATHECAL DOSING

WIDESPREAD BIODISTRIBUTION WITH INTRAVENOUS, BBB-CROSSING ASO

JENALI

OTV PROVIDES UNIFORM ASO DEPOSITION ACROSS THE CNS WITH IV DELIVERY

OTV PLATFORM HAS LARGE POTENTIAL TARGET SPACE

- Therapeutic oligonucleotides have the potential to address challenging targets
- OTV is designed to
 - Achieve superior biodistribution of ASOs across brain regions
 - Provide knockdown of target gene expression across all cell types
 - Enable less invasive dosing methods (e.g. intravenous)
- OTV opens a large potential indication space in neurodegeneration

DEUVLI

OTV CMC

COMPONENTS OF AN OTV

<u>O</u>ligonucleotide

Therapeutic molecule targeting gene or sequence of interest.

Transport Vehicle

Delivery vehicle containing a binding site targeting hTfR or other receptor of interest, enabling transport of the OTV across the blood brain barrier.

Chemical moiety used to conjugate the oligonucleotide to the transport vehicle.

Transport Vehicle

Structure

BBB target

COMPONENTS OF AN OTV – DESIGN VARIABLES

- Linker-oligo attachment
- Linker-transport vehicle attachment

THERAPEUTIC OLIGONUCLEOTIDES CAN BE WIDELY VARIABLE

Design is informed by **mechanism of** action and **pharmacology**.

Typical variables include:

- 1) Modality (ASO, siRNA, PMO, etc.)
- 2) Nucleotide chemical modifications
- 3) Number of nucleotides (per strand)
- 4) Secondary structure

Variables can significantly impact synthesis, conjugation, and analytics.

CHEMICAL MODIFICATIONS ADD FURTHER CMC COMPLEXITY

Chemical modifications typically have two purposes:

- 1) increasing *in vivo* **stability** (for example, protecting against exo- or endo-nuclease activity)
- 1) increasing **potency**

Modifications are typically introduced during oligo synthesis or as part of amidite (starting material) synthesis.

OTV PLATFORM PRODUCTION PROCESS

JEUVI

PLATFORM APPROACH TO OTV DESIGN

In an optimal "platform" approach, all variables are held constant with the exception of oligonucleotide sequence.

- Structure
- BBB target
- Non-binding Fabs
- Conjugation site(s)

³ Oligonucleotide

- Oligo modality
- Secondary structure
- Sequence
- Modifications

- Linker-oligo attachment
- Linker-transport vehicle attachment

JENNLI

OTV PLATFORM PRODUCTION PROCESS

In an optimal "platform" approach, the oligo synthesis step may be the only significantly changed unit operation.

BENEFITS OF PLATFORM APPROACH (CMC)

Transport Vehicle

- Same TV drug substance intermediate can be leveraged across multiple programs, reducing process & analytical development work per program
 - Copposite of ADCs, where drug-linker is typically conserved and antibody is variable
- Multiple programs can leverage large batches of transport vehicle

Linker

 Conjugation process parameters can be largely maintained across conjugate programs, reducing process & analytical development time

Oligonucleotide

 Solid phase synthesis process can be optimized for a given oligo type and modification profile, reducing process & analytical development time

BENEFITS OF PLATFORM APPROACH (CMC)

Transport Vehicle

- Same TV drug substance intermediate can be leveraged across multiple programs, reducing process & analytical development work per program
 - Copposite of ADCs, where drug-linker is typically conserved and antibody is variable
- Multiple programs can leverage large batches of transport vehicle

Linker

 Conjugation process parameters can be largely maintained across conjugate programs, reducing process & analytical development time

Oligonucleotide

 Solid phase synthesis process can be optimized for a given oligo type and modification profile, reducing process & analytical development time

JEUVI

OPTIMIZING GENE KNOCKDOWN CAN LEAD TO VARYING FROM PLATFORM

hTau x TfR^{mu/hu} KI mice dosed IV at 1mg/kg ASO eq. on d1, d8, d15, d22; Collect d29. Data shown as Mean +/- SEM; Student t-test (left), One-way ANOVA w/ Dunnett's multiple comparisons test (right)

19 Relative gene expression normalized to Gapdh (housekeeping gene); expression relative to Vehicle Control KD – knockdown

IMPACT OF CHANGES FROM PLATFORM ON CMC

	Variable	Potential therapeutic benefit	CMC Impact
Transport Vehicle	BBB target	Alter biodistribution by targeting a new receptor	High New cell line, upstream and downstream processes,
	Conjugation site(s)	Increase or decrease payload delivery	formulation, and analytics
Linker	Linker moiety	Alter release of payload	Medium/Low New conjugation process and formulation, potential impact to analytics Potential impact to oligo synthesis and purification
Oligo- nucleotide	Oligo type & structure (ASO, siRNA, etc)	Different mechanisms of action	High New amidites, synthesis and purification process New bioconjugation and purification processes, formulation, and analytics
	Modifications	Increase potency and/or stability	Medium Potential impact to synthesis, purification, analytics, and stability
	Sequence	Target new therapeutic indication	Low Limited anticipated impact to oligo synthesis, conjugation process & analytics

JENNLI

OTV PRODUCTION CONTROL & RELEASE POINTS

UNIQUE CONSIDERATIONS FOR CONTROL OF OTVs

- No official guidance yet from FDA or EMA on control of oligonucleotide therapeutics leverage industry white papers/best practices and relevant small molecule guidance
 - While ASO's are out of scope, general principles of ICH guidance are good starting points for development of control strategies
- Identification testing for ASO requires confirmation of full sequence by LC-MS/MS
- Precise measurements of relative amounts of specific diastereomers may be impossible due to large number of potential chiral P
 - # diastereomers = $2^{(\# \text{ chiral P})}$
 - Compared to small molecules, more complex analytical methods and statistical analysis are required to mitigate potential impacts to PK/PD

Capaldi, D., et al. Nucleic Acid Therapeutics (2017) Arrico, L., et al. Nucleic Acid Therapeutics (2022)

JENVLI

UNIQUE CONSIDERATIONS FOR CONTROL OF OTVs

- Conjugatable impurities include "full length product"-related impurities, which may still have biological activity and low toxicity concern
 - Impurities are typically grouped into families (i.e., n+1, n-1, P=O)
 - Limits for impurities can be less tight than those generally acceptable for small molecules
- OTV DS has a complex mechanism of action, requiring careful design of potency method(s)
- Conjugation of large transport vehicle to the oligonucleotide makes assessing certain oligo quality attributes difficult at the DS and DP step
 - Perform risk assessments and/or extended characterization to assess the impact of the conjugation process on oligo impurity levels and quality attributes
 - Perform forced degradation studies on model conjugates (peptide+ASO) to learn what to look for in real samples

JEUVI

EXAMPLE OLIGO CONTROL STRATEGY

Test		Oligo-Linker Intermediate
	Appearance	\checkmark
	Counterion Identity	\checkmark
General	Counterion Content by IC	\checkmark
	Water Content	\checkmark
	Assay	\checkmark
	Identification by LC/MS	\checkmark
Identity	Sequence Verification by MS ⁿ	\checkmark
	Identification of Duplex by UV Tm - if applicable	√*
	Chemical Purity	\checkmark
Purity	Related Substances (i.e., n+1, n-1, P=O)	\checkmark
	Chiral purity - if applicable	√*

ID & purity testing after conjugation is extremely difficult, but of interest during process development

*need for testing determined by oligo design (siRNA v. ASO, modifications, etc)

JEUVLI

EXAMPLE OLIGO CONTROL STRATEGY

Test		Oligo-Linker Intermediate	OTV DS	OTV DP	
	Appearance	\checkmark			
	Counterion Identity	\checkmark			
General	Counterion Content by IC	\checkmark	No longer relevant after conjugation.		
	Water Content	\checkmark			
	Assay	\checkmark			
	Identification by LC/MS	\checkmark			
Identity	Sequence Verification by MS ⁿ	\checkmark	Leverage post-conjugation potency assays.		
	Identification of Duplex by UV Tm - if applicable	√*			
	Chemical Purity	\checkmark	Characterize impact	of conjugation steps	
Purity	Related Substances (i.e., n+1, n-1, P=O)	\checkmark	on impurity levels and determine need for additional testing.		
	Chiral purity - if applicable	√*			

*need for testing determined by oligo design (siRNA v. ASO, modifications, etc)

JEUVLI

EXAMPLE OLIGO CONTROL STRATEGY

Test		Oligo-Linker Intermediate
Residual Impurities	Inorganics	\checkmark
	Residual Linker + Related Products	\checkmark
	Residual Solvents (OVI)	\checkmark
	PMI (ie; acrylomide, azide)	\checkmark
	Microbial Testing	\checkmark
Safety	Endotoxin	\checkmark
	Sterility	

Test limits will be less tight
than for oligos intended for intrathecal injection

JEUVI

EXAMPLE OLIGO CONTROL STRATEGY

Test		Oligo-Linker Intermediate	OTV DS	OTV DP	
	Inorganics	\checkmark			
Residual Impurities	Residual Linker + Related Products	\checkmark	Purge factors anticipated to be large. Characterize during clinical development.		
	Residual Solvents (OVI)	\checkmark			
	PMI (ie; acrylomide, azide)	\checkmark			
	Microbial Testing	\checkmark	\checkmark		
Safety	Endotoxin	\checkmark	\checkmark	\checkmark	
	Sterility			√	

After conjugation, follow safety testing practices for biologics

JEUVLI

28

CERTAIN ADC STRATEGIES CAN BE APPLIED TO OTVs

• DAR \rightarrow <u>O</u>ligonucleotide <u>T</u>ransport Vehicle <u>R</u>atio

 Characterizing OTR profile and quantifying amount of target OTR material remains critical for OTVs

• mAb DI \rightarrow TV Intermediate

- Tests for TV-specific impurities may only be required at TV intermediate release step (i.e., rHCP, rDNA, rProA)
- Addition of negatively charged oligo, complexity of oligo diastereomers, and/or oligo FLP impurities may make testing certain TV-specific quality attributes difficult after conjugation (i.e., charge variants)

• Free drug \rightarrow Residual ASO

- Free oligo/oligo-linker may be less of a concern than free cytotoxic drug due to high systemic clearance and low toxicity
- May not need a DS release test for residual ASO if it's possible to demonstrate sufficient clearance over OTV purification steps

only		lical Stage only	- Commercia	ii stage alter PC/I
	Points of	Control	Release	based on
	for Interr	nediate	specif	ications
	for interi	neulate	зресп	cations
	mAb DI	Drug- Linker DI	DS	DP
QUALITY ATTRIBUTE / METHOD				
Appearance and description				
Osmolarity				ě
pH				
Content				
Bioburden	ě			
Sterility				
Endotoxins	0			
Size variants including fragments and aggregates	Ŏ			ĕ
Charge variants				
Host Cell Proteins (HCP)				
Host cell DNA	0			
Residual Protein A	0			
Binding to cellular target			0	0
Characterize (effector function, ADCC/ CDC, and/or Higher Order Structure)	0		0	
Cytotoxicity bioassy			•	
Average DAR			Ŏ	
DAR profile			Õ	
Unconjugated mAb (DAR0)			ŏ	
Glycosylation			Ŭ	
Variants and PTMs – relevance also dependent on conjugation principle	Ŏ		0	
Oxidized species or other PTMs that may come through conjugation – if relevant and not "validated out"				
Conjugatable impurities			0	
Free-drug related impurities including Non-conjugatable impurities		• •	0	* 🔵 🔵
Residual solvents			0	
Metal impurities			<u> </u>	«validated out
Water content				
Chiral purity - if applicable		•		-
Residual moisture and reconstitution time (if lyophilizate)				
Particles (visible, subvisible)				
Sterility				
Container closure integrity				
Surfactant content				
Nitrogamines			If process a	ssessment require:

WRAP UP

OTV therapeutics combine the biodistribution benefit of the transport vehicle with the specific gene expression modifying capabilities of oligonucleotides

OTVs are an opportunity for a platform CMC approach, with "mix-and-match" modifications to the TV, linker, and oligo based on desired therapeutic properties

To maintain rapid timelines, it is critical to understand the potential CMC impact of new variables *early*

ADC control strategy considerations can be applied to OTVs with some caveats

- Oligonucleotides have unique analytical testing considerations and potential conjugatable impurities
- Some transport vehicle-specific and oligo-specific quality attributes may not be easily evaluable after oligo conjugation, requiring mechanisms of control other than DS & DP release tests

THANK YOU

REFERENCES

Arrico L, Stolfi C, Marafini I, et al. Inhomogeneous diastereomeric composition of mongersen antisense phosphorothioate oligonucleotide preparations and related pharmacological activity impairment. *Nucleic Acid Therapeutics*. 2022;32(4):312-320. doi:10.1089/nat.2021.0089

Bechtold-Peters K, Ruggiero A, Vriezen N, et al. CMC Regulatory Considerations for Antibody-Drug Conjugates. *Journal of Pharmaceutical Sciences*. 2023;112(12):2965-2980. doi:10.1016/j.xphs.2023.09.007

Capaldi D, Teasdale A, Henry S, et al. Impurities in oligonucleotide drug substances and drug products. *Nucleic Acid Therapeutics*. 2017;27(6):309-322. doi:10.1089/nat.2017.0691

Roberts TC, Langer R, Wood MJA. Advances in oligonucleotide drug delivery. *Nature Reviews Drug Discovery*. 2020;19(10):673-694. doi:10.1038/s41573-020-0075-7