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Today'’s topic

1. T cell composition in the starting materials

- The composition of T cells in the starting materials is critical for determining the
manufacturing efficiency and quality of piggyBac transposon CAR-T cell products.

- Key Question 1. What strategies can be employed to optimize T cell composition in
patient-derived samples, ensuring manufacturing success and the high quality of final
CAR-T cell products?

2. CAR-T cell driven second malignhancies

- Multiple factors, including vector insertion and pre-existing malignant clones, may be
associated with CAR-T driven second malignancies.

- Key Question 2: What are the key considerations for establishing robust vector copy
number (VCN) criteria for piggyBac transposons to ensure long-term safety?
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Breakthrough piggyBac CAR-T cells with superior efficacy and scalability

“ The piggyBac technology transforms CAR-T therapy with enhanced efficiency, durability, and reduced costs. “
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I Viral vs. non-viral engineered CAR-T cells

Retro/Lentivirus Transposon MRNA
in(tztjg;1 roartri]gn + i B
Ncc;)ir-]gi;[/rig?nsée(:;ﬁs Possible (Lentivirus) + +
Transgene expression Stable Stable Transient
Immunogenicity Immunogenic Less immunogenic Less immunogenic
Transfection efficiency High Low to mid High
Posssible Posssible None
Necessary Not necessary Not necessary
High, hazardous to produce Affordable? Affordable?
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The differentiation status of CAR-T cells determines the function

“Stem cell memory like CAR-T cells strongly correlated with the longe-term anti-tumor effect. “
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I Engineering of PB-based T, -rich CAR-T cells — Our Strategy

1. Leukapheresis 2. PBMC isokation 3. Preparation of PBMC for
CAR-T and feeder cells
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Unmatched Performance: piggyBac CAR-T Cells vs. Viral-Based CAR-T Cells

“ Our piggyBac CAR-T cells show superior resilience, efficiency, and longevity compared to viral CAR-T therapies. “

PB CAR-T cells showed superior anti-tumor efficacy than retroviral CAR-T cells in multiple tumor re-challenges
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I Our manufacturing system enriched stem cell memory-like CAR-T cells
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I CD45RA+ PBMC-derived CAR showed higher transduction capacity
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I Tscm phenotype was enriched in RA+ CAR-T cells
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I RA+ CAR-T cells were less exhausted after antigen exposure
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I RA+ CAR-T cells were less exhausted by serial antigen stimulation

PD-1 expression on CAR-T cells during multiple tumor re-challenges

CD19+
REH cells

!
S—

CD19-CAR-T cells

1st round

. CAR+ gated

| RA-CAR
A

RA+ CAR

Control

LB LR L BRI RAL |
1I:IE

PD-1 APC

CD19+
REH cells

!

2"d round

) CAR+ gated

: \ RA- CAR

I

I

I

: RA+ CAR

1

I

I

: Control
B BRLRLLY | "!'""l R BRLRLLRLL DL BRI |
10 112!2 1-|ZI4 lﬂE

PD-1 APC

CD19+
REH cells

!

3d round

\ CAR+ gated

RA+ CAR

Control

PD-1 APC

(Suematsu M et al. Front Immunol. 2022)

a-seeds.co.jp | A-SEEDS Co., Ltd.



RA+ CAR-T cells exhibited superior tumor control in xenogradt model

Control CAR-T RA- CAR-T RA+ CAR-T
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(Suematsu M et al. Front Immunol. 2022)
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I RA+ CAR-T cells expanded and persisted in vivo
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RA+ CAR-T cells outperformed RA- CAR-T cells in sarcoma model

Real time co-culture of EPHB4+ sarcoma cells with RA+ or RA- EPHB4 CAR-T cells
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T cell composition in the starting materials determines the quality of PB CAR-T cells

Considerations for the Development of
Chimeric Antigen Receptor (CAR) T

Cell Products v" The composition of T cells in the starting
materials is critical for determining the
manufacturing efficiency and quality of
piggyBac transposon CAR-T cell
products.

Guidance for Industry

B. Collection, Handling, and Testing of Cellular Starting Material

Due to patient or donor variability, the cellular starting material can represent a major
source of lot-to-lot variability in CAR T cell quality and function. The probability of
manufacturing success may be increased by establishing acceptance criteria for the

leukapheresis starting material used in CAR T cell manufacturing, as experience is : .

gained throughout product development. For example, you may specify a minimum cell v K ey QU estion 1.

number, viability, and percent CD3+ cells. To aid in manufacturing failure What methods can be used to effective|y
investigations, we recommend that you test the leukapheresis starting material for " . .

microbial contamination (e.g., sterility or bioburden) prior to initiating CAR T cell regu late T cell com pOSItIOﬂ In patlent'
manufacturing or that you retain a sample for post hoc testing in the event of a DP derived sam p|e S?

sterility test failure. Additional characterization of the leukapheresis starting material
(e.g., for percent and absolute number of CD4+ and CD8+ T cells, NK cells, monocytes,
B cells) may inform the CAR T cell manufacturing process as these characteristics may
influence T cell selection and expansion and final CAR T cell quality (Refs. 21, 22, 23).

-
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I CD45RA™ PBMCs are favorable for manufacturing Tscm-like CAR-T cells

1. Leukapheresis 2. CD45RA PBMC isolation 3. CAR-T manufacturing

s ] o
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- A 1 CD45RA- =m0\
’1\ d UL | : o= k&) For CAR-T manufacturing
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4. Electroporation

5. Inactivation :
8. Cryo-preservation
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Today'’s topic

2. CAR-T cell driven second malignhancies

- Multiple factors, including vector insertion and pre-existing malignant clones, may be
associated with CAR-T driven second malignancies.

- Key Question 2: What are the key considerations for establishing robust vector copy
number (VCN) criteria for piggyBac transposons to ensure long-term safety?
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Long-term follow-up on second tumors after CAR-T therapy

e NEW ENGLAND
JOURNAL o MEDICINE

ESTABLISHED IN 1812 JUNE 13, 2024 VOL. 390 NO.22

Risk of Second Tumors and T-Cell Lymphoma
after CAR T-Cell Therapy

Philip L. Bulterys, M.D., Ph.D., Chih Long Liu, Ph.D., Xiaoman Kang, B.S., Mari N. Olsen, B.S.,
Zinaida Good, Ph.D., Saurabh Dahiya, M.D., Matthew J. Frank, M.D., Ph.D., Bita Sahaf, Ph.D.,
Crystal L. Mackall, M.D., Dita Gratzinger, M.D., Ph.D., Maximilian Diehn, M.D., Ph.D.,
Ash A. Alizadeh, M.D., Ph.D., and David B. Miklos, M.D., Ph.D.

Mark P. Hamilton, M.D., Ph.D., Takeshi Sugio, M.D., Ph.D., Troy Noordenbos, M.D., Ph.D., Shuyu Shi, B.Med.,

Study Overview

v' Participants: 724 patients treated with CAR-T cell
therapy

v' Focus: Identification of second cancers post-CAR-T
therapy

v' Findings: 25 cases of second cancers detected
(Solid tumor: 11 cases, Hematological malignancies: 14
cases)

v' 1 suspected CAR-T-derived T-NHL cases

T-cell Non-Hodgkin Lymphoma (T-NHL) case
» Patient: 59-year-old woman
* Timeline: T-NHL developed 54 days post-CAR-T infusion
» Suspected Cause: CAR-T-derived T-NHL

- T-NHL clone was detected at low levels in the patient’s
blood before CAR-T therapy

- Pre-existing clonal hematopoiesis and its malignant
transformation during CAR-T cell therapy.

(Hamilton MP et al. N Eng J Med. 2024)
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Secondary CAR-T driven T-NHL

BRIEF REPORT

Indolent CD4+ CAR T-Cell Lymphoma
after Cilta-cel CAR T-Cell Therapy

Metin Ozdemirli, M.D., Ph.D., Thomas M. Loughney, M.D., Emre Deniz, Ph.D.,
Joeffrey J. Chahine, Ph.D., Maher Albitar, M.D., Stefania Pittaluga, M.D.,
Sam Sadigh, M.D., Philippe Armand, M.D., Ph.D., Aykut Uren, M.D., and

Kenneth C. Anderson, M.D.
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Overview

v Indolent lymphoma diagnosed 5 months post-CAR-T

Molecular Analysis

v

v

v

Conclusion

infusion with persistent monoclonal CD4+ T-cell infiltrates.

Lentiviral vector integration into the SSU72 gene identified
as a potential driver of lymphomagenesis.

High levels of CAR T cell-specific RNA fusion transcripts
detected in tumor cells.

Numerous genetic alterations that may have contributed to
malignant transformation

v' The potential for secondary malignancies associated with

lentiviral-based CAR-T products.

(Ozdemirli M et al. N Eng J Med. 2024)
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CAR-T cell-derived lymphoma in PB CD19-CAR clinical trial

Patient 2
Pre CART 3.2months 8.3 months 11.5 months 15.0 months

r Relapsed/refractory CD19* No GVHD/sCRS AND
i Recipient B cell malignancy post-HSCT Persisting disease OR 8
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¢ . ﬁ L
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(Micklethwaite KP, el al. Blood. 2021, Biship DC, et al. Blood. 2021)
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I Product-derived lymphoma in PB-CD19-CAR (CARTELL) trial

Parameters

Strategies

Cell Type

e
e
e
e
e
=
-

.

Transgene

Transposase

Electroporation

Post-activation

Expansion

Allogeneic PBMC
no chemo-induced or disease-specific factors

CD19-CAR with 4-1BB co-stumulation
EF1a promoter

Hyperactive form PB transposase (Super PB) mRNA
achieved higher genome integration

Single, and high voltage pulse

Donor-derived irradiated PBMC feeder

AIM-V with human serum/IL-15 supplementation
15-23 days of expansion

Product-derived lymphoma

Observed in lymphoma cells

o High number of CAR transgene
integration

o Structual variant and copy
number alteration

o Transcriptional readthrough
with 4 genes (FAM11D,
COLS8A1L, HIVEP1, and FYN)

o CAR transgene integration in
BACH2 locus

(Micklethwaite KP, el al. Blood. 2021, Biship DC, et al. Blood. 2021)
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I Similar Integration Mapping in PB- and Retro- CAR-T cells
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CAR-T derived T cell malignancies: potential mechanisms

1. Vector integration

- The vector used to engineer CAR T-cells could potentially integrate into oncogenic regions of the T-
cell genome

2. Pre-existing malignant clones

- Pre-malignant cells or genetic predispositions in patients before CAR-T cell therapy, suggesting that
the treatment may accelerate or unmask existing oncogenic potential

3. EBV association

- The involvement of Epstein-Barr virus in some cases points to a potential role of viral-driven
lymphoproliferation

4. Genetic factors

- Mutations in genes such as DNMT3A and TET2, associated with clonal hematopoiesis, have been
observed in some cases.
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CAR-T derived T cell malignancies: vecter insertion and malignant transformation

b. Vector Copy Number (VCN)

Vector integration can potentially alter expression of cellular genes and
contribute to tumorigenicity (Refs. 31 and 32). Therefore, vector
integration in the DP is an important safety attribute to measure for CAR
T cell release. For integrating vector systems, the average number of
integrations per CAR-positive cell, generally referred to as VCN, should
be determined and reported on the Certificate of Analysis (COA) for each
lot. Determining VCN as a function of total cells includes CAR-negative
cells in the denominator and lowers the reported vector integration rate.

Using the percentage of CAR-positive cells, the average VCN per CAR-
positive cell can be calculated. VCN as a function of CAR-positive cells
will provide a more accurate representation of the VCN in modified cells
and thus a more accurate representation of product risk for insertional
mutagenesis. We recommend that the manufacturing process be
optimized to control VCN while meeting the target CAR-positive cell
frequency.

We recommend that the VCN release criterion be justified based on a risk
assessment. The risk assessment may include supporting data from
studies such as insertion site analysis, clonal dominance, dose, indication,
study population, etc. Supporting experimental data may be obtained from
developmental and engineering manufacturing runs.

v Multiple factors, including vector
insertion and pre-existing malignant
clones, may be associated with CAR-T
driven second malignancies.

v' Key Question 2:
What are the key considerations for
establishing robust vector copy number
(VCN) criteria for piggyBac transposons
to ensure long-term safety?
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Long-term safety assessment of CAR-T cell products

Unexpected

malignant v Optimization of manufacture

potential v Safety assessment for the final product

v Design of trial to monitor the safety issue

“SAFER” CAR

Parameters Strategies

Genotoxicity v Reduce the transgene copies (use of non-hyperactive transposase ?)
= High Copy Numbers

- Harsh electroporation condition
= Promoter-induced readthrough v" Optimization of promoter/enhancer

v Optimization of electroporation condition

Insertional dysregulation v' The transgene integration map (Tag-PCR based NGS)
- Disruption of proto-oncogene v Development of site-specific transgene introduction

Monitoring of malignant transformation v" Check the possibility of monoclonal proliferation
- TCR repertoire assessment v L h . v-oh inical trial
- Screening ymphoma screening in early-phase clinical tria
- Animal model ?2? v" Development of reliable assessment tool for long-term safety

(Wilson MH et al, Blood 2021, Schambach A et al, Mol Ther 2021)
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Conclusion
v' The piggyBac transposon system redefines CAR-T cell therapy with improved scalability,
efficiency, and cost-effectiveness.

v' Optimized T cell composition significantly contributes to stable and robust manufacturing
efficiency, ensuring consistent product quality.

v' Leveraging stem-cell memory-like T cells enhances long-term efficacy and durability,
critical for addressing solid tumors.

v' Long-term safety monitoring through robust VCN criteria and advanced strategies
remains essential for clinical success.
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