

Stem Cell-derived Medicinal Products:

Cellular Engineering to Address Manufacturing and Regulatory Concerns

Todd C. McDevitt, Ph.D.Vice President, Head of Cell Therapy

FIRST PRINCIPLES OF CELL THERAPY DEVELOPMENT

Stem/progenitor cells

Biological **substrate** for cell-based medicines

- Cell sources of origin
- Expansion potential
- Differentiation capacity

Differentiation

Transform into relevant therapeutic cell states

- Differentiated phenotypes
- Engineering intrinsic prop's
- Scalability of manufacturing

Augmented function

Engineer intrinsic traits to enhance cell potency

- Prolonged persistence
- Stabilization of phenotype
- Enhanced expansion in vivo

EVOLUTION OF THERAPEUTIC CELL ENGINEERING

Surface properties

(present day)

- Antigen recognition
- Immune evasion
- Synthetic receptors
- Cytokine signaling

Cell phenotype

(near term)

- Intracellular organelles
- Enhanced cell robustness
- Immunosuppressant secretion

Cell manufacturing

Enhanced function (longer term)

- Stimulus-responsive, on-demand
- Overcome in vivo obstacles
- Impart cells with novel capabilities

FUNDAMENTAL CELLULAR RESPONSES

- Conserved genetic programs
 enable cells to execute a
 diverse array of activities in
 response to external stimuli
- Modular units formulate the basis of a fundamental "tool kit" that can be employed to control cellular state(s)
- Engineering of input stimuli and/or functional response(s) enables novel cell behaviors

CELLULLAR SYSTEMS PROCESSING

 Re-engineer endogenous signaling pathways to elicit desirable therapeutic outcomes • Example: engineer T cell potency in response to specific pathobiology molecular stimuli

Customized cell response

- Recognize disease tissues
- Migrate to disease sites
- Launch local therapeutic responses

ADVANTAGES OF CELL-BASED MEDICINES

- Systemic exposure vs. localized mechanism(s) of specific activity
 - Finite drug dose per administration vs. continuous production *in situ* (w/ cells)
- Prescribed drug dosing regimens vs. on-demand molecular release

INTRINSIC vs. EXTRINSIC CONTROL OF CELL MFTG

- Classically, process development relies upon systematic optimization of extrinsic control parameters to yield consistent CGT products
- Engineering intrinsic cell properties to address specific manufacturing challenges represents a new paradigm for process development
- Examples of engineering cellular traits to address mftg challenges:
 - Attenuate adverse responses (knock-down/knock-out relevant genes)
 - Augment critical cellular needs (knock-in of relevant genes/constructs)
 - Re-wire endogenous pathways (introduce synthetic biology elements)
- Create cell lines that are better suited to handle the stresses imposed by specific stages of manufacturing pipelines → safety & consistency

CELL MANUFACTURING CHALLENGES

Cell expansion

- Cell density (metabolics)
- Reagent consumption
- Waste by-products

Cellular heterogeneity

- Promote cell survival
- Prevent phenotype emergence
- Control cell proportions

DP formulation

- Cell density (fill conc.)
- Cryopreserve tolerance
- Post-thaw recovery

CELL ENGINEERING FOR COGs REDUCTION

- Prevailing assumption that CoGs will be reduced by scaling-up
 - fixed costs (labor, facilities, etc.) may be reduced by dose
 - largest contributor to CoGs are materials/reagents for mftg

- Dependent relationship between cell quantity and mftg costs
 - decreased #'s of cells/dose one route to reduce costs
 - enhanced functional performance (per cell) to reduce dose
- Assessing cell quality requires better cell potency assays

CELL EXPANSION in vivo

- Minimize mftg time for cell engineering (e.g., T-charge™)
 - reduce time and CoGs to produce therapeutic dose
 - preserve less differentiated (more potent) cell phenotype

- Rely upon cell expansion in vivo to achieve efficacious dose
 - harder to accurately define the dose in individual patients
 - ability to trigger expansion at desired site of action

PHENOTYPIC STABILITY

- Cell phenotypes are impacted by exposure to extrinsic (host) factors
 - systemic (humoral) factors presented globally
 - local microenvironmental parameters at site of intended action

- Employ strategies to de-sensitize cells to extrinsic factors
 - remove the ability to respond (e.g., knock-out strategies)
 - redefine the response to stimuli (likely requires knock-in)

METABOLIC REPROGRAMMING

- Metabolic function
 - common underlying quantitative metric of cell potency
 - highly variable amongst individuals & over time

- Potential strategy to extend therapeutic window of activity
 - enhance survival and persistence of cells after administration
 - accelerate the therapeutic mechanism of activity

SUMMARY & CONCLUSIONS

- The rapid development of genome/epigenome editing tools permits novel opportunities to modify and equip cells with non-native functional traits
- The regulatory acceptance of genetically engineered cells enables new strategies to develop manufacturing processes for cell therapies
- Engineering cells for manufacturing challenges could result in enhanced scalability, greater consistency & comparability, and reduction of CoGs

THANK YOU

Genentech

A Member of the Roche Group

Instructions 16

PRIORITIZATION CRITERIA FOR CELL THERAPIES

- Alternative therapeutic modalities?
 - recruitment of endogenous cell populations (e.g., bi-specific Abs)
- Route of administration?
 - technology and expertise needed to deliver cell therapies
 - supporting infrastructure to deploy broadly with consistency
- Potential opportunity to treat multiple indications?
 - significant investment in technology & mftg to make a single cell type
 - Broaden the potential impact by equipping with multiple targets

HUMAN IPSC GENOMIC INTEGRITY

Frequency of BCOR mutations in human iPSC lines

- 72% of fibroblast-derived iPSCs had UV-related mutations
- Pathogenic BCOR mutations were not found to be present in parental fibroblast lines prior to iPSC reprogramming

 27% of blood-derived iPSCs had pre-existing BCOR mutations or acquired de novo during iPSC expansion

