

Control Strategies using CQAs for Method Changes and Comparability for Gene Therapy

Phillip Ramsey Sangamo Therapeutics CASSS CGTP Summit 2024 November 19, 2024

Outline

- Sangamo Therapeutics Overview
- CQA role in meeting the challenges of Gene Therapies
- Case Study I: Control Strategy for Analytical Methods Measuring a CQA
- Case Study 2: Control Strategy for Process Change Leveraging Analytical Comparability
- Summary

Sangamo is a differentiated genomic medicine company focused on treating debilitating neurological diseases

Sangame THERAPEUTICS

Potent zinc finger epigenetic regulation technology, with neurology programs advancing towards the clinic

Industry-leading AAV capsid discovery platform

enabling non-invasive intrathecal and intravenous delivery to the brain

Powerful research platform continually innovates in new modes of genome modulation to support value creation for both wholly owned programs and potential partners

Successful partnership track record with \$50 million in expected nearterm payments from Genentech and \$220 million in potential milestone payments* from Pfizer. Fabry partner discussions ongoing, with clear pathway to potential registration.

SHARP STRATEGIC FOCUS IN NEUROLOGY

OPTIMIZING ASSET VALUE

Sangamo pairs the epigenetic regulation *and* capsid delivery capabilities needed to create neurology genomic medicines

Future of Neurology Genomic Medicines

Company pipeline and business development opportunities

CORE NEUROLOGY PIPELINE					
Indication	Preclinical	Phase I/2	Pivotal	Partner	Commentary
Chronic Neuropathic Pain (Nav1.7)	Data presented at ASGCT 23)			Nav1.7 IND-enabling activities continue to advance
Prion Disease	Data presented at ASGCT 24				Prion CTA-enabling activities continue to advance
Tauopathies	Data presented at ASGCT 24			Genentech A Member of the Roche Group	August 2024: Announced epigenetic regulation and
Undisclosed				Genentech A Member of the Roche Group	capsid delivery license agreement with Genentech
ALS/FTD	Data presented at ASGCT 24			AstraZeneca Rare Disease	
Huntington's Disease				Takeda	

OTHER PROGRAMS

Indication	Preclinical	Phase I/2	Pivotal	Partner	Commentary
Hemophilia A (Giroctogene fitelparvovec)	Data presented at ASH 2023			P fizer	July 2024: Positive topline readout in Phase 3 AFFINE trial. Pfizer plans to discuss data with regulatory authorities in coming months.
Fabry Disease (Isaralgagene civaparvovec)	Data presented at WORLDSymposi	ium 2024			Continue to amass encouraging clinical data. Potential partnership discussions ongoing.

CQA role in meeting the challenges of Gene Therapies

Common Challenges to Control Strategies in CGT products

- Limited understanding of CQAs for Novel CGT modalities (AAV, LV)
- Low # of lots (development/clinical) resulting in limited process and product knowledge
- Analytical methods evolve during clinical development and retains are essential to perform analysis
- Lack/shortage of process representative material for critical analytical assays
- Compressed timelines for development

Analytical Strategy for AAV Products

- 1. Precise/Fast Genomic Titer or another rapid dose determining assay
- 2. Genomic integrity
 - AAV DNA modifications
 - Partial DNA size and identity
 - Capsid Identity / Concentration
- 2. Empty, Partial, Full AAV
 - . Infectivity/Transduction
- 4. Viral Capsid Protein Subunit Ratio
- 5. Capsid Post Translational Modifications
- 6. Aggregates & SVPs
- 7. Higher order structure (viral assembly conformation changes)

***CURRENT TECHNOLOGIES:**

qPCR/ddPCR, multiplex PCR, SR-NGS, LR-NGS, CDMS, IP-RP-HPLC, Capillary Electrophoresis

***CURRENT TECHNOLOGIES:**

Standard protein analytical technologies—LC/MS, mass photometry, CDMS, AUC, gene expression ELISAs, SEC, A4F-MALS, CE, SDS-PAGE, CrytoTEM, etc

Not so standard for protein analytics: TCID-50 (infectivity) and/or gene expression by PCR

Evolution of Methods

- > Analytical methods evolve during clinical development
- > New/improved methods are implemented

Potency Assay Matrix Approach

Case Study 1: Control Strategy for Analytical **Methods** Measuring a CQA

Example applies to the following Control Elements:

- Release Testing
- Stability Testing
- In-process Testing
- Product Characterization

Empty Capsids as CQA

- AAV Empty Particles Can be one of the major productrelated impurities
- May act as decoys against neutralizing antibodies
- Has potential immunological consequences
- Higher production cost if significant amount of empty capsids are present
- Important to characterize the AAV preparations

Cp/vg = I (Ideal)

Empty Capsids as CQA

Technology	Assay	Procedure	Advantages	Challenges
Calculation	Capsid Titer and VG Titer	Ratio	Fast TAT	Theoretical number; Highly variable as values are obtained from two different assays
OD	OD260 and OD280	Ratio	Fast TAT; QC- friendly	Highly pure product needed;Assay is susceptible to contaminants
CryoTEM	Staining of capsids	Visual test, software calculates full/empty	Slow TAT	Partial capsids are difficult to measure; Low resolution
AUC	Sedimentation velocities	Ultracentrifugation	Slow TAT	Sedimentation coefficients have to be significantly different for full and partial
IEX-HPLC	lon exchange separation	HPLC	Fast TAT, QC- friendly, HTP	Partials are difficult to separate
Mass Spectrometry	CDMS	HPLC/MS	Medium TAT	Expensive equipment

Sangamo's Proprietary AEX-HPLC Approach for E/F Analysis

- I. Modular/Adaptable Discontinuous Gradient Approach – Isocratic Hold and Two linear gradients
- 2. High resolution for empty from full capsids (>>> 2.0)
- 3. Low Peak Tailing for both empty capsids (< 2.0)
- 4. Retention times < 2% CV

Khatwani et. al., Patent (US20210009964) Khatwani et. al., Mol. Ther. Methods & Clin. Dev., 21, 548-558, 2021 Rs = USP Resolution Tf = Tailing Factor

Empty Capsids as CQA

- 5 development lots for same product along with an empty AAV lot used with multiple methods
- Each lot manufactured with a process change

Are methods and lots comparable enough to monitor the CQA?

- Example Criteria:
- Difference that is practically zero = 50% near LOQ (Based on SME input)
- α = 0.25; Confidence level = 1 α = 0.75

Technology	Lower Bound	Upper Bound	Outlier Lots
AUC	2.5	7.5	PDREC- 000313-001
TEM	4.8	14.6	PDREC- 000313-001
CDMS	3.0	9.2	PDREC- 000313-001
AEX-HPLC	4.2	10.8	PDREC- 000313-001
Sanaa	mo		

Orthogonal Characterization of Empty Capsids - Bivariate fit analysis

Strong correlation (r>0.99) for AEX-HPLC vs all orthogonal assays with strongest correlation against CDMS

Case Study 2: Control Strategy for Process Change Leveraging Analytical Comparability

Comparability Study

- What? Impact assessment of changes in manufacturing processes for any therapeutic modality (i.e., FDA = Major Change, EMA = Type II variation)
- Why? Demonstrate pre- vs post-change materials are comparable
- How? Design varies with the stage of product development (Early, Late, Post approval, and potential impact of changes)
- Product Comparability is a sequential process -
 - Analytical Comparability Comparison of Quality attributes
 - Non-clinical Comparability In vitro and In vivo tests, PK/PD
 - Clinical Comparability Clinical bridging

References: *ICHQ5E and *Doc. Ref. EMEA/CHMP/BMWP/101695/2006 Risk Based Comparability for Complex Molecules during Expedited Development: Leveraging Enhanced Technology and Regulatory Mechanisms – Armando et al; Am. Pharm. Review, 2018

Adeno-associated Virus - Potential Critical Quality Attributes (pCQAs)

Case Study for Late-Stage Product

Systemic delivery of AAV vectors allows *in vivo* correction of monogenic disease

Sangame

Fabry Disease: isaralgagene civaparvovec (ST-920) Abbreviated clinical pathway supports efforts to secure a collaboration partner

- Largest gene therapy program in Fabry disease
 - Enrollment, screening and dosing complete in Phase 1/2 STAAR study – 33 patients total
 - 17 of 18 patients off Enzyme Replacement Therapy (ERT)*
- Compelling clinical data
 - Continue to amass encouraging clinical data, including evidence of improvements in kidney function.
 - In 18 patients treated >1yr, observed a statistically significant rise in both mean and median eGFR levels.
 - Updated clinical data expected in the coming months.
- FDA alignment on abbreviated regulatory pathway
 - Aligned on a single-arm study with up to 25 patients, alongside confirmatory evidence, as an acceptable pathway to BLA
- Held productive meeting with EMA on regulatory pathway
- Received EMA PRIME eligibility and UK MHRA ILAP status

Challenges in CMC Development Understanding the Target Product Profile

Value proposition	• e.g. what differentiates the therapeutic from current Standard of Care?			
Indication	Disease or condition to be addressed			
Studied populations	 Male and female Adults or adolescents Prior therapy or orphan indication 			
Efficacy: primary	Clinical end-points			
Efficacy: secondary	Clinical end-points			
Safety & Tolerability	Adverse events, infusion reactions			
Dose, ROA, Regimen	 Target dose X EI3 vg/kg Administered by IV infusion in outpatient hospital setting 			
Storage & Handling	 Shipped and stored at ≤-65[°]C Vials thawed at RT or at 4[°]C for duration ≤ # of vials per patient dose 			

Transitioning from Phase I/II to Phase III

- 5x increase in DP conc.
- Formulation change
- Scale increase from a 500 L to 1700 L bioreactor to meet phase III/commercial needs
- Site-change from CMO.A to CMO.B

successful type C meeting on comparability and phase III plans with the FDA; clear guidance was obtained

Sangame THERAPEUTICS

Comparability Protocol - Overall Roadmap

Sangamo AAV Manufacturing Process Platform via Sf9

Process Performance Evaluation - Phase I/II vs. Phase III

Seed Train Process Performance

- Process performance across historical phase I/II runs at CMO.A demonstrated process consistency with phase III runs at CMO.B
- VCD and Viability trends in production bioreactor similar between CMO.A and CMO.B

Process Performance Evaluation - Phase I/II vs. Phase III

Production Reactor Process Performance

- Cell viability at harvest consistent between CMO.B during Eng., GMP I and 2
- The intended titer increase with phase III development was achieved

slide courtesy Anthony Chikere

Summary - CQAs enable Method Change and Comparability

- Analytical Methods along with Process should evolve during development.
- Method changes and comparability are integral processes to drug development and are supported by clear CQAs.
- Multiple assays for a single CQA can be necessary.
- Seek help from experts in the field to get it right.
- Consider platform data if available.

Acknowledgements

Santosh Khatwani Wayne Low Kum Anthony Chikere Sheetal D'Mello Connor Patton Yiling Bi Benson Gikanga

Phillip Ramsey SVP Technical Operations pramsey@sangamo.com Sandeep Yadav Michael Molony James Miller Andy Ramelmeier Aditya Wakankar

