

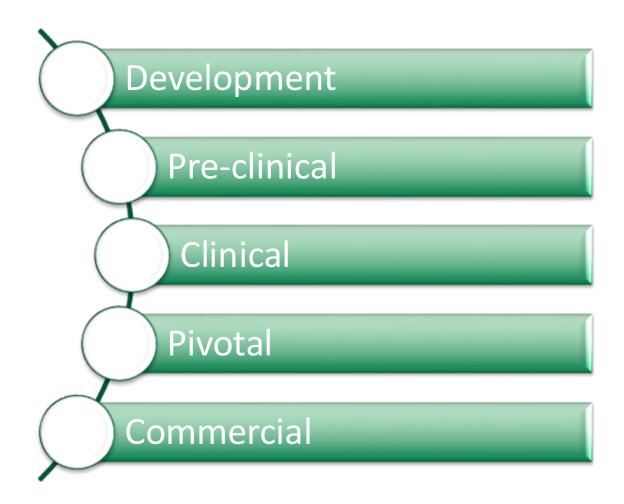
The Journey to Commercialization

CASSS 2024

Scott Cross, M.Sc., Sr. Principal / Head of Gene Therapy CMC

Introduction

It really is a Journey


- ATMPs require unique manufacturing strategies and are often fast tracked, leading to numerous hurdles which need to be surmounted during a product's life cycle
- Identifying manufacturing, testing and regulatory strategies early in a products life-cycle, as well as planning for success and understanding risk, can greatly improve the ease, timeline, and expense associated with bringing CGT products to market
- At a high level, this talk will focus on identifying strategies to help navigate a product's lifecycle

Early Stage Product Life-Cycle: Points to Consider

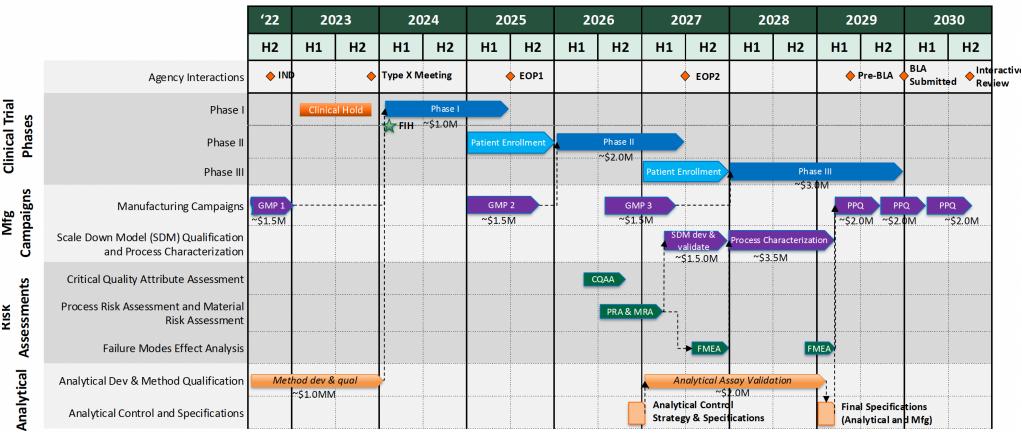
Early stage

- Plan for success
- Have an end goal in mind when weighing decisions
- Take a phase-appropriate approach and understand upfront vs.
 long-term regulatory, cost and timeline risks
- Platform and scale
 - Decide your platform early (e.g., viral vectors: suspension vs. adherent; cell therapies: open or closed, automated or manual)
 - Understand the expected data and information to support comparability if platforms need to change in later stages
- Raw materials
 - Use highest quality raw materials. Ensure their manufacturing and testing is appropriate and acceptable.
- Manufacturing
 - External vs. Internal
 - Do you plan to move the program in house at some point?
 - Comparability and clinical considerations if manufacturing changes are made
 - Raw materials (e.g., plasmids and cell banks)
 - If you need to move the manufacturing, will you be able to take the plasmids and cell bank?
 - IP Is there any IP that would need to be shared with a new manufacturer?

Timelines and Expenses

Time is money. Considerations that help can help save on both.

- Set manufacturing, analytical, and regulatory strategies early on
 - Funding and timelines may dictate strategy
 - Setting strategy early can speed up timelines and save on costs
- Internal vs. external manufacturing
 - External manufacturing can be the fastest way to get into clinic
 - Leverages external expertise, systems, and infrastructure
- Comparability considerations
 - Early financial limitations can greatly influence a products path
 - Understand the implications of manufacturing changes
- Tolerance for risk
 - All companies have differing tolerances for risk
 - Timelines can be improved by taking on more risk
 - Understand your tolerance for risk and take an appropriate risk-based approach to your strategy planning


Early-Stage Product Suggestions

- Create a Target Product Profile (TPP)
 - Living document
 - Puts everyone is on the same page
- Considerations for internal or external development and manufacturing
 - Early stage vs. late stage
 - Comparability challenges
- Importance of Master Service Agreements (external manufacturing)
 - These contracts set the stage for how and when your product is made
 - MSAs should not be one sided. Don't be afraid to negotiate
 - Can give you recourse should you need it
 - Legal, technical and quality aspects to consider
- Roadmaps Plan out timelines, considerations, and expenses
 - Develop a roadmap early on to detail planned activities and estimated costs
 - Can be used with a Gantt to evaluate project progress
 - Can help to identify where risks can be taken to improve timelines
- Risk appetite and strategies
 - Define your appetite for risk

Roadmap Example

- Roadmaps help everyone see the overall plan and timing
- The tool is a nice way to visualize how to shorten timelines by taking risks or what the impact of a delay may be

Manufacturing Considerations

Internal vs. external manufacturing

Internal manufacturing

Pros:

- Control your own destiny
 - Cues and manufacturing schedules are up to you
- Designed for your product(s)
- Can be stage gated (i.e., expansion space can be designed in)

Cons:

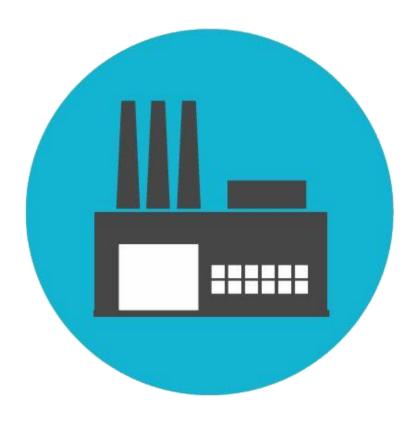
- Build, maintenance and staffing come at a high price
- Time to design, permit, build, commission and EMPQ can take 2+ years

External manufacturing

Pros:

- Less expensive start up costs
- Knowledge base and experience for manufacturing lies with CDMO
- Have many of the systems in place (e.g., facility, equipment, QMS, personnel)
- Steering committees can help to resolve conflicts quickly and keep manufacturing on track

Cons:


- Cues
- Platform may not be best for your product
- CDMOs need to make a profit (high overhead)
- May not have late-stage experience (i.e., validation)

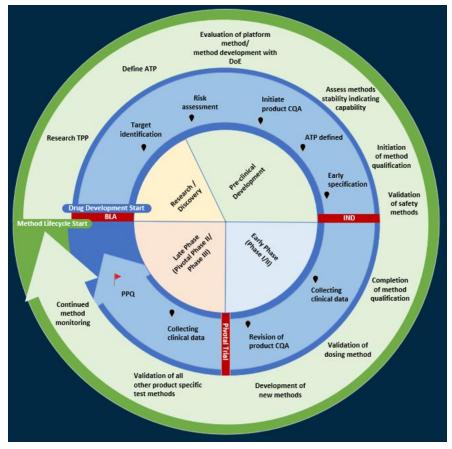
Manufacturing Considerations

Facility

- Considerations
 - Is the facility appropriately designed and run for GMP manufacturing?
 - Consider:
 - Flows: personnel, material, waste, and product
 - HVAC coverage
 - Contamination control strategy
 - Multiproduct facility
 - Quality management system in place
 - Personnel trained and qualified
 - Is/will the facility be commercial ready
 - Could the facility pass a PLI
 - Is there a plan in place to move the facility to become commercial ready
 - Is the plan to move at some point to a commercial ready facility
 - Validation
 - Have they been through the process validation process (e.g., FMEAs, Process characterization, PPQs

Manufacturing Considerations

Process


- Raw materials
 - Recommend a phase appropriate approach to qualifying raw materials
- Batch records
 - Batch records should evolve as the process matures
 - Collection of data early on will help setting appropriate acceptance criteria and informing early validation planning
- Scale
 - Often necessary to scale up as the product moves into late-stage trials
 - Considerations should be given early on to comparability
- Comparability
 - Early discussions with health authorities regarding manufacturing changes and comparability will save time and money
- Validation
 - Validation is a lengthy and expensive process. Ensure staff has experience and the process is performed correctly

Recommendations for Phase Appropriate Product Decisions

Analytics

- Phase appropriate analytics
 - Development and pre-clinical stages:
 - Method development and qualification
 - Identify stability indicating methods
 - Initiate assay qualification
 - Validation of safety assays
 - Early phase clinical:
 - Complete assay qualifications
 - · Develop new methods if needed
 - Begin validation of critical assay needed for late stage
 - Late phase clinical/pivotal:
 - Continue method validation
 - Full validation of critical assays (e.g., titer, potency)
 - BLA:
 - All assays are fully validated

BioPhorum. Oct-02-2024

Regulatory Considerations

Points to consider

- Heath authorities
 - Want to see these products approved
 - Are willing to work with sponsors and manufactures
 - Concerned with the safety and efficacy of products
- Recommendations
 - Know your product
 - You are the expert of your product. Not the regulators!
 - Engage with the agencies early
 - Detail your path and proposals
 - Regulators want to understand your plans and how you intend to support it
 - Have a fallback plan
 - Get a written and clear agreement
 - General questions get general answers

Bio

Scott Cross Sr. Principal / Head of Gene Therapy CMC. Dark Horse Consulting Group

- 25+ years in CGT space
 - Merck & Co.
 - Indiana University Vector Production Facility / NGVL
 - Cincinnati Children's Hospital Viral Vector Manufacturing Facility
 - University of Florida / Florida Biologix / Brammer Bio
 - Orchard Therapeutics
 - Dark Horse Consulting Group
- Fully invested in advancing the CGT field and moving products into the clinic and through to commercial approval

