Utilizing AES CE Infinite for Charged Variant Fraction Collection

pass.

erspective

obi

Gianna Pescatore Scientist – Analytical Chemist, BioProduct R&D

time

invest

Uses of icIEF fraction collection

- Charged variant peak ID and potency testing is used to support BLA submissions
- Identification of post translational modifications in forced degradation sample
- Evaluate manufacturing process consistency
- Fractions can be tested using the molecules other analytical methods to determine how each variant is detected by the overall analytical control strategy

CEX vs iclEF Collection

- Historically, CEX has been used to collect charged variant fractions
- Advantages of CEX
 - Ability to inject a substantially higher sample volume and concentration
 - CEX 50 mg/mL 500 uL injection
 - icIEF 4 mg/mL 35 uL injection
 - Shorter collection period
- Disadvantages of CEX
 - Difficult to verify icIEF identity due to the different selectivity between the separations
 - CEX fractions that contain a single variant when confirming with CEX, can have multiple peaks when tested using icIEF

CEX Fraction Confirmation: CEX vs icIEF

CEX icIEF 0.090-0.40 0.080-0.35 0.070-0.30 0.060-0.25 0.050-0.20 0.040-0.15 0.030-0.10 0.020-0.05 0.010 0.00 0.000-7.00 7.10 7.20 7.30 7.40 7.50 7.60 7.70 7.80 7.90 8.00 8.10 8.20 8.30 pl 0.00 5.00 20.00 25.00 30.00 35.00 10.00 15.00 4 Minutes

AES CE Infinite Capabilities

- Quick method development
 - Fractions can be verified from ~ 3 injections
- Automated collection based on an absorbance trigger point
- Collects 9 different fraction segments
- 36 fraction collection injections can be done in a single setup
 - Ideal instrument for collecting fractions to be used for peptide mapping and potency testing
- 35-50 minute run time per injection (varies per method)
- Reverse polarity function allows acidic variants to elute first to obtain pure fractions
- Can be directly connected to a mass spectrometer to allow for direct icIEF-MS

Fraction Collection Workflow

Develop a method that provides sufficient resolution on the CE infinite (1-3 Days)

Determine fraction collection parameters (1-3 Days)

Collect 3 injections worth of material to ensure collection prediction is consistent (~3 hours)

Prepare collected fractions for verification using the molecules icIEF method (~1-2 hours)

Run prepared fraction samples to confirm peak ID (~2-4 hours)

Molecule 1: Background

- IgG1 Monoclonal Antibody
- Material used was stressed at 40C for 4 weeks
- Peak summary
 - AV3-1.3%
 - AV2-6.6%
 - AV1-26.4%
 - MP 63.1%
 - BV1 2.7%
- Identified problem: Integration strategy of the shoulder peak on the acidic side of the MP (10-15% of MP)
 - Is it stability indicating?
 - Can it continue to be integrated with the MP?

Sample Components

- **Carrier ampholytes** 5% of the final sample
- **Solubilizer** Urea or solubilizer of choice
- Anodic/Cathodic spacers Can be used to adjust the pixel location of the MP to increase/decrease run time
- Sample concentration Start at 1-2 mg/mL and assess target concentration based on current
 - Current > 100 uA damages the cartridge
 - Highest successful concentration 4 mg/mL
- Water is added to achieve a final sample volume of 250 uL, yields 6 injections (Each injection is 35 uL)
- No methyl cellulose Cartridges are coated with an acrylamide derivative which allows a higher sample concentration to be achieved

Carrier Ampholyte Screening

- 1. 5% AES SH 6-9
- 2. 5% AES UH 7-9
- 3. 5% AES UH 7-10
- 4. 3% AES SH 6-9 & AES UH 7-10
- 5. 5% AES SH 6-9 + 10 mM Arginine
- 6. 5% AES SH 6-9 + 5 mM Arginine

Experiment 1 – Single Ampholyte (1-3) Experiment 2 – Cathodic Spacer (4-6) Experiment 3 – 3 Ampholyte Combinations (7-10)

- 7. 1% Pharmalyte 5-8, 2% AES HR 7-9 & 2% AES HR 8.5-9.5
- 8. 1% Pharmalyte 5-8, 2% AES SH 6-9 & 2% AES HR 8.5-9.5
- 9. 1% AES SH 4-8, 2% AES SH 6-9 & 2% AES HR 8.5-9.5
- 10. 1% Pharmalyte 5-8, 2% AES SH 6-9 & 2% AES HR 7-9

Experiment 1 - Single Ampholyte Analysis

- Evaluating single carrier ampholytes alone is the first step in method development
- Using one narrow range ampholyte can allow for increased separation
 - However, these typically require longer focusing times which may not be ideal for bulk collection
- It helps establish which carrier ampholyte type and ideal pl range for the final fraction method

Experiment 2 - Cathodic and Andodic Spacers

- Anodic and Cathodic spacers can be used to adjust the pixel location of the profile.
 - Cathodic spacers (arginine) shifts the profile to the acidic side which reduces risks of micro air bubbles shifting the trigger point out of the detection window
 - Anodic spacers (IDA) shifts the profile to the basic side and reduces mobilization time

Air bubble shift

Experiment 3 – 3 Ampholyte combinations

- A combination of 3 carrier ampholytes has shown to be the best approach for 3 different molecules
- AES SH 6-9 had sufficient resolution and ideal run time in experiment 1
 - Chosen as the "base" carrier ampholyte in the final mix
- Pharmalyte 5-8 was added to maintain the acidic side of the gradient to shorten runtime
- AES HR 7-9 was used to add a higher concentration of the ampholytes in the molecules pl range to improve separation

Final Conditions

Component	Stock Conc	Units	Target	Required Volume (µL)
Pharma 5-8	100	(%)	1	2.5
AES 6-9 SH	100	(%)	2	5.0
AES 7-9 HR	100	(%)	2	5.0
Urea	8	Molar	3.5	109.4
Sample	9.4	mg/mL	4	106.4
Water				21.7
250 uL yields uL each)	six injectio	ons (35	Total Volume (µL)	250

Parameter	Setting
Focusing Period 1	1 minute, 1000 volts
Focusing Period 2	1 minute, 2000 volts
Focusing Period 3	13 minutes, 3000 volts
Mobilization Phase	19 minutes, 3000 volts
Mobilization flow rate	0.16 uL/min

Fraction Collection Settings and Prediction

Paramete	r	Set	ting		U	F3
Focusing I	Period 1	1 m	inute, 1000 volts		1.60	1 million and
Focusing I	Period 2	1 m	inute, 2000 volts		4 40	
Focusing I	Period 3	13 r	ninutes, 3000 volts		1.40	
Mobilizatio	on Phase	19 r	ninutes, 3000 volts		1.20	F5
Mobilizatio	on flow rate	0.16	ն uL/min		<u>100</u>	
Absorband	ce trigger	0.10	AU (2020 pixels)	900	5 1.00	
Auto colle	ction	-150) seconds	r ha	0.80	
Fraction	Collection T (sec)	ime	Interval Post Collection (sec)	Aheo	0.60	F7
1	55		1		0.40	
2	35		40		0.20	$F9_{1} = 0$
3	45		1		0.20	
4	45		45		0.00	
5	35		10		0.00	
6	35		15		-0.204	
7	35		15			Pivale
8	35		20			
9	45					14

Fraction confirmation

Collected Material

- Fractions collected over a course of 4 days, totaling 114 injections
- Fractions were buffer exchanged using centrifugal concentrators to remove additives and increase concentration
- DropSense was used to obtain the concentration for each fraction
- Verified identity and purity by analyzing the fractions using the molecules analytical icIEF method

Fraction	Variant Purity (%)		Concentration (mg/mL)	Vol collected (uL)
1	BV1	66.7	0.02	55
2	MP	52.1	0.02	65
3	MP	79.0	0.03	60
4	MP (SH)	90.8 (SH 30.8)	0.18	127
5	MP (SH)	81.0 (SH 22.5)	0.66	140
6	AV1	51.5	0.34	130
7	AV1	71.4	0.36	115
8	AV1	58.8	0.19	107
9	AV2	62.9	0.1	145

Note: volume collected is remaining material after concentration and icIEF analysis

Transition to Reverse polarity (1 Day)

- Allows acidic variants to elute first
 - Increases purity of acidic variants
 - AV3 could not be collected >60% purity using normal polarity – blending of AV2
- For this molecule the ampholytes were adjusted for reverse polarity
 - 1% pharmalyte 5-8
 - 2% AES HR 7-9
 - 2% AES HR 8-10.5 (AES SH 6-9)
- Typically a longer run time working against electroosmotic flow
 - Mobilization flow is roughly double of what is used for normal polarity

Conclusion

- The full method development process can be completed in 1-2 weeks
- After 4 days of collection, enough material was collected to support ID testing of MP, AV1 and potentially the shoulder peak
 - BV1 (2.7%) would take ~ 3 Months to collect enough material for ID
 - Bioassay requests ~150 ug of material for potency
 - MP and AV1 potency material can be collected in 1-2 months
- This projects collection was put on pause, but reverse polarity showed potential for collecting the lower level acidic variants
 - The transition of a normal to reverse polarity method can be completed in a day

