High-Throughput Capillary Electrophoresis of Biopharmaceutical Modalities using the SCIEX BioPhase 8800 System

CE Pharm 2024 September 17, 2024

John Orlet

Analytical R&D Biotherapeutics Pharmaceutical Sciences Pfizer Inc. St. Louis, MO

Organizational Context

Trispecifics

Presentation

Plasmid DNA Analysis Molecular Background Introduction to SCIEX BioPhase 8800 Characterization of pDNA Analysis of a Few Additional Biologics mRNA Proteins

Conclusions

Presentation

> Plasmid DNA Analysis

Molecular Background Introduction to SCIEX BioPhase 8800 Characterization of pDNA Analysis of a Few Additional Biologics mRNA

Proteins

Conclusions

DNA Plasmids are the Starting Material for Gene Therapies and mRNA

Molecular Properties and Topological Isoforms of pDNA

Methods addressing topology can be useful for setting specifications around supercoiled plasmid content

Analytical R&D Pfizer R&D – St. Loui

Conventional Analytical Methodologies for Plasmid DNA Analysis

Agarose Gel Electrophoresis

- Well-established
- Time and labor-intensive
- Semi-quantitative, poor resolution

<u>HPLC</u>

- Quantitative, robust technique
- Poor recovery of some isoforms

Capillary Gel Electrophoresis

- Quantitative, sensitive
- Good resolution of isoforms

SCIEX BioPhase 8800 is a New Generation of CE Instrumentation

Capillary Cartridge

TTT.

- Next-generation CE system from SCIEX enabling higher throughput
- 8 fixed capillaries in a cartridge -Simultaneous data collection
 - 8 x 50 µm ID; 20 cm L_{effective}, 30 cm L_{total}
- Currently, 2 available capillary chemistries:
 - Bare-fused silica
 - Neutral-coated
- Integrated UV & LIF detectors
- 96-well plate-based configuration

Reagent Inlet Tray

Sample Inlet Tray

Comparison of SCIEX PA 800 Plus and SCIEX BioPhase 8800 Systems

Attribute	PA 800 Plus	Biophase 8800
# of Capillaries	1	8
Modifiable Capillary	\checkmark	*
Capillary Coatings	\checkmark	✓
Detectors	Swappable UV or LIF	Integrated UV and LIF
Max Samples	32*	96
Ease of Automation	\checkmark	\checkmark
Empower Integration	✓	✓
Ease of Use	✓	\checkmark

* Due to method structure, not inherent to instrument capacity

The BioPhase 8800 is a streamlined platform for generating data in a high-throughput manner, with potential for future capabilities.

SCIEX DNA 20 kb Plasmid and Linear Kit

- Plasmid topology and size methods provided
- 30 cm and 50 cm BFS capillaries available
 - 50 cm recommended for "enhanced" linear size analysis
- Bare-fused silica capillary relies on capillary coating step
- Reagents are compatible with SCIEX PA 800
 Plus and BioPhase systems

Method Duration: 22.0 min Number of Actions: 8

Component List

- Acid Wash/Regenerating Solution
- CE Grade Water
- DNA 20 kb Plasmid and Linear Conditioning Solution
- DNA 20 kb Plasmid and Linear Gel
- DNA 20 kb Plasmid and Linear Sample Buffer
- DNA 20 kb Plasmid Test Mixture
- SYBR Gold Nucleic Acid Gel Stain

	C Con F	apillary ditioning/ Rinsing		Precond Electrop	itioning horesis		Separatio	'n
Wait nm, Wait,	+ +	Separate	Durati -30.0 Ramp Disab	ion: 2.0 min. kV • Time: 0.2 min. le Data Collectio	on		Inlet: gel Outlet: gel	
	(L)	Wait	Durat	ion: 0.0 min.			Inlet: Water Dip 1 Outlet: Water Dip 1	
h/Rege	Luit	Inject	Durati 0.5 ps	ion: 5 sec. si	Plate: Sam	ple	Outlet: Waste	
inse	(L)	Wait	Durat	ion: 0.0 min.			Inlet: Water Dip 2 Outlet: Water Dip 2	
	• •	Separate	Durati -9.0 k Ramp Autoz	ion: 15.0 min. V Time: 2.0 min. ero: 2.5 min.			Inlet: gel Outlet: gel	

	Wethod Burdton. 22.0 II	III. Number of Act	10113. U		
Cattings	(Capillary Cartridge:	22.0 °C, Wait	Sample Storage:	10.0 °C, Wait
	Cottingo	Capillary Length:	30.0 cm	Detector Type:	LIF, 520 nm, Wait,.
**	Settings	Capillary Type:	Bare Fused Silica	Peak Width:	1 sec.
		Current Limit:	600 µA	Data Rate:	8 Hz
\bigcirc	Rinse	Duration: 1.0 min.		Inlet:	Acid Wash/Rege
		Duration 1.0 min		lalat	Water Dines
\bigcirc	Rinse	70.0 psi		Outlet:	Water - Rinse Waste
\bigcirc	Rinse	Duration: 3.0 min. 50.0 psi		Inlet: Outlet:	gel Waste

Evaluating Injection Reproducibility Across Different Parameters

- Intercapillary and intracapillary analysis produce consistent and reproducible quantitative results
- Observable, but consistent, differences in migration times by capillary

Intercapillary – Capillary Performance						
Row	Row AVG (%SC) STDEV RSD					
А	91.2	0.6	0.6			
В	91.4	0.6	0.6			
С	91.4	0.4	0.4			
D	91.6	0.3	0.4			
E	91.3	0.5	0.6			

Performance of a single capillary across multiple injections

Intracapillary - Array Performance				
Column AVG (%SC) STDEV RSD				
2	91.3	0.2	0.3	
3	91.4	0.7	0.7	
4	91.3	0.2	0.2	
5	91.6	0.4	0.5	
6	91.4	0.5	0.5	

Performance of the array in the same injection

Run-to-run Variability of pDNA Topology Analysis

Comparison with Agarose Gel Electrophoresis (AGE)

L = Linear OC = Open Circle

Analytical R&D Pfizer R&D – St. Louis

40.00 ⊇ 20.00 SC OC 0.00 SC 60.00 1 40.00 20.00 SC-D OC 0.00 60.00 SC → 40.00 й И 20.00 OC SC-D 0.00 4.40 5.40 4.20 4.60 4.80 5.00 5.20

Electropherograms collected with SCIEX Kit

Quantitative Comparison

%SC	9.5	15.5
%L	84.5	81.5
%OC	6.0	3.0
%SC	75.5	94.5
%L	0.0	0.0
%OC	24.5	5.5
%SC	49.2	66.8
%L	33.5	29.3
%OC	17.3	4.0

- CGE and AGE demonstrate similar migration patterns
- Observe some quantitative differences, different peak resolution
- No ability to generate gel images from BioPhase electropherograms yet Confidential

5

ential 13

Linear concentration response for plasmid topology

fidential 14

Sample Digestion and Forced Degradation for Peak Identification

- Enzymatic treatment (BspQI) generates linear isoform, peak identification
- Heat-degradation of sample degrades circular species, producing higher open circle levels

Varying Minor Species Concentration Response for Circular Plasmids

Separation Voltage Impacts Peak Resolution with a Dependence on Size

In-process Samples with Variety of Matrices Show Compatibility with Kit

- Tested multiple process-related matrices, examples:
 - Circular: 10 mM Tris, 1 mM EDTA, pH 8.3
 - Linearized: 40 mM HEPES
 - High Salt: 50 mM Tris, 10 mM EDTA, 660 mM NaCl, pH 7.5
- Compatible with a wide variety of salts and concentrations

See broader peaks in baseline for some high-salt samples

Plasmid Size for Topology Compatibility

140.00 130.00 5.4 kB 120.00 7.1 kB 110.00 · 12.8 kB 100.00 90.00 13.8 kB 80.00 RFU 70.00 60.00 50.00 40.00 30.00 20.00 10.00 0.00 5.00 5.20 3.60 3.80 4.00 4.20 4.40 4.60 4.80 5.40 5.60 5.80 6.00 Minutes

Circular pDNA analysis with minor isoforms

- Evaluated circular and linear plasmids ranging in size from approximately 3 16 kb
- Have found general compatibility with a wide range of plasmid sizes, however, decreased resolution with larger pDNA

Linear Sizing and Calibration Using 30 cm Capillary Cartridge

- 30 cm and 50 cm capillary lengths available depending on level of precision necessary
- Plasmid migration within expected migration for linear species
- Recommend using ladder in each well to ensure accurate size

Examples of different pDNA sizes overlaid with a linear species ladder

Restriction Enzyme Digestion Produces Expected Linear Species

Adapting Prior Methodology Using a Neutral-Coated Capillary to the SCIEX BioPhase

Cook et al. Method dsDNA 1000 Kit gel + 1x TBE SYBR Gold Stain SCIEX BioPhase Neutral Capillary, 30 cm -5.8 kV Separation Voltage 488 nm Excitation, 520 nm Emission

- 7.1 kB pDNA analyzed using SCIEX and published conditions
- Use similar method parameters to published literature, but shorter capillary
- Consistent migration patterns are observed with both methods, minor difference in quantitation

	SCIEX	Cook et al.
SC	87.1%	84.0%
SC-D	4.7%	5.0%
OC	8.2%	11.0%

Cook et al. *Current Molecular Medicine*, **2020**, 20, 1-8 1 10.2174/1566524020666200427110452 He et al. *Electrophoresis*, **2024**; 1–9. https://doi.org/10.1002/elps.202300212

Presentation

Plasmid DNA Analysis Molecular Background Introduction to SCIEX BioPhase 8800 Characterization of pDNA

> Analysis of a Few Additional Biologics

mRNA Proteins

Conclusions

SCIEX RNA 9000 Purity & Integrity Kit on the BioPhase

SCIEX PA 800 Plus vs BioPhase 8800 Electropherograms with rCE-SDS

Signal intensity differs between instruments

Observe slight improvements in resolution

	PA 800 Plus	BioPhase	%Δ
% Fragment	0.8	0.8	4.2
% HC + LC	99.2	99.2	0.0
Total TCA	182783	305708	50.3

Peak intensity greater for same injection parameters on BioPhase. This results in increased peak areas overall, though reportable values appear similar for both instruments for rCE-SDS.

Analytical R&D Pfizer R&D – St. Louis

Summary

In this work, the SCIEX BioPhase 8800 demonstrated higher throughput CE-SDS, CGE-LIF

- The BioPhase can be used to measure plasmid topology and size
 - Profile for plasmids is consistent with AGE
 - Linear quantitation of topology is achieved in <2 µg/mL
 - Abundance, specifically of OC, is still being understood
 - This procedure worked for in-process and fully formulated sample
- The SCIEX BioPhase performs similarly to current instrumentation with critical exceptions
- Straightforward implementation with differences in detection
- Proof of concept data supports the potential application of BioPhase for mRNA and protein therapeutics

Acknowledgments

Pfizer

SCIEX

St. Louis Christopher Hood Olivia Cunio Katherine Funke Gaofei He Yan He Larry Thompson Thomas Powers Xiaoping He

Andover Yuqing Cozzens Austin Degroot Dave Ripley Fang Wang Quincy Mehta Merv Gutierrez Zaifang Zhu

