

Application of CGE for Purity Analysis in Cell and Gene Therapy

Ryan Hylands (Senior Technical Specialist)

CASSS CE Pharm

16th September 2024

Chemistry, Manufacturing and Control

Clinical Development

- Introduction to Pharmaron
- Overview of Plasmids and AAV
- CE for Plasmid Analysis Kit Comparison
- CE for AAV Purity and Genome Integrity Analysis
- Summary

PHARMARON is a leading fully integrated pharmaceutical R&D services platform with global operations and has a well-established team of over 20,000 employees working in 21 different sites located in China, the United States and the United Kingdom.

World Class Centre for Gene Therapies

Overview of Plasmids and Adeno-Associated Virus

Laboratory Services

Chemistry, Manufacturing and Control

Clinical Development

Biologics & CGT

- **Plasmids** (pDNA) are small, circular, double-stranded DNA molecules, that exist as separate entities to the chromosomal DNA of bacterial cells.
- Genetic engineering allows for the manipulation of DNA sequences, enabling the expression of genes of interest.
- *In* vivo, pDNA typically exists in a **supercoiled** form, however other isoforms may form as breaks in the DNA strands occur.

- Top choices to deliver DNA to target cells.
- Safest strategies for GT; mild immune response and its non-pathogenic nature.
- Lack genes for viral integration and replication.
- Target tissue serotype specific.

Modes of production can influence heterogeneity with respect to the packaging of the DNA.

3 repeating viral proteins in ~10:1:1 ratio (VP3:VP2:VP1)

~22 nm

Multiple Plasmids are Required to Support AAV Production

- 3 Plasmids typically used for Transient Transfection-based production of AAV
 - HELPER (enables AAV production)
 - REP/CAP (Replication and capsid formation)
 - Gene of Interest

龙化成

 Pharmaron have created a catalogue of AAV plasmid constructs to support our customers.

VA RNA

E2

E4

High quality plasmid as a starting material produces higher quality AAV

- Extensive analysis of Plasmid CQA's.
- Portfolio of assays READY to support plasmid manufacture for use as starting material and batch release.

Capillary Electrophoresis (CE) for Plasmid Purity Analysis

Laboratory Services

Chemistry, Manufacturing and Control

Clinical Development

Biologics & CGT

- Purity of plasmid is determined by percentage (%) supercoiled isoform.
- Requirement for high % supercoiled to **meet release specifications**.
- Traditionally gel-based methods are utilized, however limitations around quantification and resolution of impurities.
- We investigated **CE-LIF** for a more **accurate purity evaluation**.

Supercoiled (SC)

Open Circular (OC) Linear (L)

Confidential - Company Proprietary

- dsDNA 1000 kit gel acts as sieving matrix plasmid size specific.
- Optimum gel dilution for each plasmid size for separation of SC and impurities.
- Separation of isoforms is more challenging with larger plasmids.

Dilution of the separation gel can be optimised for accurate purity determination of different plasmid sizes

- Capillary Gel Electrophoresis is inherently challenging to characterise impurities.
- Restriction digestion can be used to generate specific isoforms.
- Digested samples can be spiked into undigested sample to help identify impurity peaks.

Resurio	ction digest of a 7 kb plasmid
Undigested	
Undigested + Linear	
Undigested + `nicked'	
Undigested + Linear + 'nicked'	1 M.
	Migration Time (mins)

Restriction digest can be used to characterise various plasmid isoforms

- Streamlined plasmid purity determination with great resolution of plasmid isoforms.
- Separation of linear dsDNA between 100 and 20,000 bp allows for size estimation and fragment analysis.
- No optimisation of gel dilution required; neat gel used for analysis of broad size range of dsDNA.

Streamlined analysis of a range of Plasmid dsDNA with the new DNA 20 kb Plasmid and Linear Kit

Comparison of dsDNA kits

Kits from SCIEX	dsDNA 1000 kit	DNA 20 kb Plasmid and Linear kit				
Size range	Up to 1 kb, optimised for analysis of larger dsDNA.	2-15 kb (up to 20 kb)				
Gel state	Dehydrated solid gel, requires reconstitution in water prior to use	Liquid, no reconstitution required				
Fluorescent dye	LIFluor EnhanCE or SYBR [™] Gold Nucleic Acid gel stain ¹	SYBR [™] Gold Nucleic Acid gel stain ¹ , potential use with LIFluor EnhanCE				
Capillary	DNA Coated Capillary, 40.2 cm length	Bare Fused-Silica Capillary, 30.2 cm length Dynamic coating of capillary during conditioning, required every 50 injections				
System compatibility	CESI 8000 Plus system, PA 800 Plus system DNA capillary not available for the BioPhase 8800 system	CESI 8000 Plus system, PA 800 Plus system and BioPhase 8800 system (multi-capillary)				
Optimisation required	Yes, optimisation of gel dilution required for each new plasmid and plasmid size	No, gel is universal up to 20 kb plasmid size				

Simplified plasmid purity analysis with the new DNA 20 kb Plasmid and Linear kit

¹SYBR™ is a trademark of the Life Technologies Corporation. SYBR™ Gold Nucleic Acid gel stain is not available for resale.

Confidential - Company Proprietary

Kit comparison: 7 kb Plasmid

¹SYBR[™] is a trademark of the Life Technologies Corporation. SYBR[™] Gold Nucleic Acid gel stain is not available for resale.

Comparable plasmid purity profile of 7 kb plasmid with both dsDNA kits

Kit comparison: 12 kb Plasmid

¹SYBR[™] is a trademark of the Life Technologies Corporation. SYBR[™] Gold Nucleic Acid gel stain is not available for resale.

Comparable plasmid purity profile of 12 kb plasmid with both dsDNA kits

業 危化成 In-process Sample Analysis with the DNA 20 kb Plasmid and Linear kit

- Both SCIEX kits for dsDNA analysis allow for plasmid purity analysis throughout the production process including cell paste, in-process and bulk purified plasmid material.
- Buffer exchange typically required to minimise affect of high salt concentration.

Successful plasmid purity monitoring throughout the production process

CE-LIF for Plasmid Purity - Summary

- **CE-LIF** method developed for **accurate purity** evaluation.
- Successfully validated platform method for ~6-15 kb plasmid size range.
- The new SCIEX DNA 20 kb Plasmid and Linear kit evaluated for plasmid purity analysis across two different plasmid sizes throughout the manufacturing process.
- Comparable purity data was achieved between the dsDNA 1000 kit and the DNA 20 kb Plasmid and Linear kit

Benefits of the DNA 20 kb Plasmid and Linear kit:

- Compatible across single and multi-capillary CE systems
- Reduced analyst intervention
- Improved robustness and reduced assay variability

Reduced optimisation for different plasmid sizes using the new DNA 20 kb Plasmid and Linear kit

AAV Purity Determination

Laboratory Services

Chemistry, Manufacturing and Control

Clinical Development

Biologics & CGT

業 ^{進 龙 化 成} Pharmaron Approach to Viral Vector Critical Quality Attribute Analysis

Full analytical toolkit to support product CQA analysis

Water plug

- Protein-SDS complexes separated based on electrophoretic mobility through a gel filled ٠ capillary when voltage is applied.
- Can be used to monitor viral proteins (VP1, VP2, VP3) once capsid is denatured allows ٠ purity assessment of sample (% VPs).
- Ratio of viral proteins can also be estimated. ٠

CE-SDS-LIF: Multiple AAV Serotypes

Electropherograms showing various AAV serotype purity profiles

Assay performance: <5% RSD Total area <2% RSD for % Purity result

 Minor modifications to the method required for each serotype based on physical properties.

CE-SDS-LIF assay has been optimised to allow analysis of multiple AAV serotypes

- The BioPhase 8800 system is a high throughput, multi-capillary CE system which allows for analysis of 8 injections at once.
- **Reduced** method development and sample analysis time.
- Compatible with the Waters **Empower**[™] software for ease of use.
- **Simple method transfer** between standard one capillary systems, CESI 8000 Plus system/PA 800 Plus system and the BioPhase 8800 system.

Increased analytical capabilities with the new BioPhase 8800 system at Pharmaron

• Transfer of Pharmaron's AAV purity assessment by CE-SDS-LIF method from the CESI 8000 Plus system/PA 800 Plus system to the BioPhase 8800 system.

Method successfully transferred to HTP multi-capillary system with minimal optimisation

Comparable AAV viral protein profile achieved across all 8 BioPhase 8800 system capillaries

餐^煮^ℓ^k^k AAV Purity with the BioPhase 8800 system: Peak Area Comparison

- AAV sample prepared and injected 5 times across all 8 capillaries (total of 40 injections).
- Peak areas were compared and % RSD calculated.

Sample Injection	Сар А	Сар В	Cap C	Cap D	Cap E	Cap F	Cap G	Сар Н	% RSD Across Capillaries	
1	90	104	99	99	104	104	101	101	4.6	
2	90	103	96	98	104	102	102	98	4.6	
3	89	100	96	98	103	101	101	98	4.4	
4	89	102	94	96	102	102	101	98	4.6	
5	89	101	94	96	101	101	98	99	4.1	
% RSD	0.6	1.5	2.0	1.4	1.5	1.3	1.4	1.1		

Comparable peak areas observed across different capillaries and within the same capillary

AAV Percentage Purity Comparison: BioPhase 8800 system vs CESI 8000 Plus system

BioPhase 8800 system									١	CESI 80 syst	00 Plus em		
Sample Injection	Cap A	Сар В	Cap C	Cap D	Cap E	Cap F	Cap G	Сар Н	Mean	% RSD Across Capillaries		Sample Injection	% Purity
1	99.02	98.77	98.86	98.90	98.71	98.74	99.49	98.96	98.89	0.2		1	98.82
2	99.33	98.95	98.98	98.98	98.87	98.72	99.20	98.98	98.99	0.1		2	98.68
3	99.47	99.02	98.95	99.02	99.03	99.03	99.68	98.97	99.08	0.2		3	98.64
4	99.43	98.93	99.33	98.91	98.47	98.97	99.34	98.34	99.05	0.2		4	98.65
5	98.49	98.97	99.02	98.79	98.09	98.74	99.19	98.73	98.95	0.1		5	98.59
Mean	99.15	98.93	99.03	98.92	98.63	98.84	99.38	98.80				Mean	98.68
% RSD	0.4	0.1	0.2	0.1	0.4	0.2	0.2	0.3				% RSD	0.1

High precision AAV purity results achieved increasing sample throughput **8x** over single capillary system

AAV Genome Integrity

Laboratory Services

Chemistry, Manufacturing and Control

Clinical Development

Biologics & CGT

٠

AAV Genome Integrity by CE-LIF

- Errors during encapsidation of the intact genome can result in AAV capsids containing a partial/truncated genome which can impact transgene expression, therapeutic efficacy and safety.
- It is therefore critical to assess the quality and size of the encapsidated genome.
- The sample preparation involves genome release, PCR purification and sample incubation prior to analysis.

Created using BioRender.com

Range of AAV serotypes and genome sizes analysed against ssDNA ladder for intact genome size assessment.

Successful confirmation of intact genome size with ssDNA ladder

Empty: full AAV analysis can help determine encapsidated non-genome related species

- Given the complexity of viral vector manufacture, Pharmaron's analytics are critical for successful production and release of GT products.
- **CE-LIF** is a powerful technique to obtain accurate information on **plasmid and AAV purity** for production of GT products with minimal sample volume.
- We demonstrated comparable plasmid purity analysis across a broad size range with the new DNA 20 kb Plasmid and Linear kit and the dsDNA 1000 kit from SCIEX and observed less optimisation was required for the new kit.
- We transferred the AAV purity assay onto The **SCIEX BioPhase 8800 system** and achieved an **increased throughput** (8x) and **reduced method development** time.
- **Pharmaron** successfully **validated platform CE assays** for plasmid and AAV purity determination which are **readily available** for analysis of a **range of plasmid sizes** and **AAV serotypes**.

Acknowledgements

SCIEX

- Stephen Lock
- Fang Wang
- Merv Gutierrez
- Quincy Mehta
- Marcus Heinl
- Whitney Smith
- Joann Place

Pharmaron

- Angela Massey
- Luiza Chrojan

If you are interested in learning more about our advances in Gene Therapy product development watch **Pharmaron's CGT On-Demand Webinar Series here:**

