

Dual Hydrodynamic and Electrokinetic Actuation in a Capillary Assembly Enables DNA in Line Concentration and Separation

Frédéric GINOT, ADELIS, FRANCE

Presentation Plan

- 1. Basics of the dual hydrodynamic and electrokinetic actuation
- 2. Unrivalled sensitivity
- 3. In-line purification
- 4. Large DNA, up to 150 kb
- 5. DNA fractionation
- 6. A new Multichannel-CE

Basics of the dual hydrodynamic and electrokinetic actuation

µLAS Physics

µLAS concentration phenomenon

Concentration video

The BIABooster : a practical implementation

The BIABooster : concentration + separation

~1 μ L injected \rightarrow high sensitivity

Andriamanampisoa et al., Anal Chem (2018) Malbec et al., Sci Rep (2019)

Unrivalled sensitivity

The BIABooster : results 0.1 – 1.5 kb range

0.1-1.5 kb

2% CV

3%

DNA 1K method

- Sizing range : —
- LOD :
- Sizing precision :
- Sizing accuracy :
- Quantification precision: 15% CV
- Quantification accuracy : 20%
- Dynamic range : 1000

Multiple injections, concept

Sensitivity can be further enhanced by increasing the sample volume injected in the device.

Multiple injections is quantitative

LOD for 10 injections : 1 fg/ μ L at 1 kb

In-line purification for analysing unpurified samples

Application to cfDNA and other biological fluids

DNA is a large molecule, even at 100 bp (~63 kDa), and highly negatively charged.

Smaller molecules, or less charged, or positively charged, will be washed away by the buffer during concentration.

Problematics with salts

DNA in buffer

DNA in salty solution

$$\rho_1 \sim 10 \ \Omega. m \qquad \rho_2 \sim 10 \ \Omega. m$$

$$E_1 = \frac{U}{2L} \qquad E_2 = \frac{U}{2L} = E_2$$

$$E \sim 0$$

$$\rho_{1} \sim 10 \ \Omega. m \qquad \rho_{2} \sim 0.7 \ \Omega. m \text{ (plasma)}$$

$$E_{1} = \frac{U}{L} \qquad E_{2} = \frac{\rho_{2}}{\rho_{1}} \frac{U}{L} \sim 0, 07 E_{1}$$

$$E_{2} \text{ is too small}$$
is

Solution for salts

Backflow is effective to extract DNA from salts

No backflow

Seven backflows

—0mM NaCl —20mM NaCl —50mM NaCl —100mM NaCl —130mM NaCl

Manage lipids and proteins

Perform a standard proteinase K digestion with detergent before BIABooster analysis

DNA ladder

Human plasma sample 9 μ L plasma + 1 μ L 10× DNA ladder

DNA migration is not affected by plasma matrix

Application to cfDNA in human plasma

More than 3000 clinical plasma samples have been analysed in this way

Monitoring Residual DNA

DNA concentration

Harvest method 1 : 58 pg/ μ L

Harvest method $2:2 \text{ pg/}\mu\text{L}$

The method enables cellular DNA characterisation along bioproduct purification

Large DNA, up to 150 kb

Additional innovations for large DNA

Pressure gradual decrease superposed to voltage decrease

Concentration area without dead volume

Injection chamber

Separation capillary

New manufacturing technology for capillary device The diameter changes progressively along 3 mm No dead volume in the concentration area

• Sizing range : 1-150 kb

• 0,8 μl injected

• Limit of detection: 20 fg/ μ L at 5 kb – 50 fg/ μ L at 100 kb

Genomic DNA samples

Comparison between extraction methods

Comparison between sample sources

Bacterial Artificial Chromosomes characterisation

Shape of the concentration junction and resolution

Smooth transition improves resolution also for smaller DNA

DNA fractionation

Application to cfDNA for NIPT and genomic DNA for long read sequencing

DNA fractionation at 1-10 µL scale

cfDNA for NIPT

fragment isolation for long read sequencing

Yield \ge 90% - < 10 ng at junction - Fraction volume : 10-15 µL - sequencable

Milon et al., Nucleic Acids Res. (2019) 27

A new Multi Channel CE-LIF

A new versatile four channels CE-LIF has been developed to take fully advantage of the BIABooster technology

- Continuous pressure range, 20 mbar 12 bars.
- Current measurement in each channel
- Up to 8 buffers on board
- Refrigerated samples

Acknowledgment

<u>Methods</u> A. Boutonnet M. Mano E. N'Tsiba

<u>Capillary device</u> J. Fabre MA El Khaldi

A. Bancaud P. Bruand

<u>Capillary device</u> D. Labat G. Bouwmans

G. Favre (cfDNA samples) A. Pradines

Thank you for your attention

www.adelis-tech.com