

A Probability-Based Modeling Approach for Characterization of ADC Charge Variants Separated by icIEF that Leverages Bottom-Up Mass Spectrometry Datasets

CJ Waite – SeaGen, Inc.

CASSS – CE Pharm 2021

Table of Contents

AGENDA

Introduction - rationale

- Challenges of indirect and direct charge variant (CV) characterization
- Addressing characterization challenges with models of CV separations

Comparison between empirical and modeled CV distributions

- Uncharged and charged ADC drug-linker models
- Chemical modifications of mAb backbone and drug-linkers (DL)

CV modeling applications

- Conversion of CV models to in silico intact MS
- Using modeling to enhance understanding of CE-MS and CEX-MS data

Charge variant assay interpretation

Charge variant assay interpretation

What do we do with this observed difference?

Analytics to insights approach

Peptide map		-80 control	40C stress
	deamidation	1.1%	1.4%
	DL hydrolysis	~2%	~9%

• What is it?

- What are we observing in the assay?
- Why did it happen?
 - What is driving the change?
 - Deamidation or other PTM
 - DL hydrolysis
- Should we care?
 - Where does the change occur?
 - What is the impact for patients?
- What should we do?
 - Tailor control strategy to presumed criticality of the attributes that are changing

Seagen®

Direct characterization of CVs by OFFGEL fractionation

Seagen

OFFGEL as an ADC charge variant isolation strategy is artifactual

- OFFGEL: Direct characterization, but not viable for all ADCs
 - Observed assay-induced artifactual hydrolysis of drug linkers over duration of separation

ÖSeagen®

CV profiles are complex and charged DLs will increase complexity

- Understanding of charge variants (CVs) is essential for developing ADC process and product knowledge
- The coming challenge: charged drug-linkers
 - Partially-loaded ADC species separate on the basis of drugload
 - Additional complexity makes it very difficult to indirectly characterize and understand what is causing CV differences
- For all biologics there is a need for a holistic strategy that does not rely on fractionation and direct characterization of CVs

Binomial distributions are used to model CV profiles

Model (expected) CV separation is generated from known molecular properties and direct PTM quantitation

Combined model output is charge sorted and compared to icIEF

- Binomial modeling parameters
 - PTMs
 - Deamidation, Succinimide, N-term cyclization, C-term Lys processing, Glycation
 - DL hydrolysis

Binomial modeling tracks well for control and stress samples

PTM differences between control and stressed material underly the profile changes observed in the CV model

Model: 40C stress (Uncharged DL)

The impact of stress induced increases in PTMs and DL hydrolysis on CV separations can be abstracted

Model: 40C stress (Uncharged DL)

Additional level of detail such as composition of PTMs in particular peaks can be inferred from modeled data

Charged DL model to icIEF shows good agreement for stressed material

DL hydrolysis is the primary driver for CV profile change and increase in acidic species

Model: -80C control (Charged DL)

Model: 40C stress (Charged DL)

The modeling approach provides granularity into changes in specific molecular populations

- Categorical view for broad understanding
 - Model provides greater granularity with enumeration of species with combinations of modifications

d: deamidation g: glycation h: DL hydrolysis

Seagen®

In silico mass spectrum generation from PTM-based CV model

Merging intact CV-MS approaches with PTM-based CV modelling

- The development of MS compatible charge variant separations such as CEX-MS¹, CE-MS² and CIEF-MS³ enhances understanding of separated proteoforms
- PTM-based CV modelling is an orthogonal approach that can be leveraged to add • complimentary, site-specific PTM information

- F. Fussl, K et al., Charge Variant Analysis of Monoclonal Antibodies Using Direct Coupled pH Gradient Cation Exchange Chromatography to High-Resolution Native Mass 1. Spectrometry, Anal Chem 90(7) (2018) 4669-4676.
- M. Han et al., Intact mass analysis of monoclonal antibodies by capillary electrophoresis-Mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 1011 (2016) 24-2. 32.
- 3. S. Mack et al., A novel microchip-based imaged CIEF-MS system for comprehensive characterization and identification of biopharmaceutical charge variants, Electrophoresis 40(23-24) (2019) 3084-3091.

Advantages of utilizing PTM-based CV modelling

- Addresses the knowledge gap that exists when CV separations are not amenable to direct characterization through fractionation
- Provides a means to rapidly infer identities of new and changing peaks in analytical assays in a rigorous and quantitative manner
- Can be leveraged to better understand if a CV change is impactful to patients
 - Is the change due to a PTM in a mAb CDR potentially impact binding/activity

Acknowledgements

A big thank you to SeaGen's Analytical Biochemistry department, particularly...

- Mass Spectrometry Core Group
- Analytical Sciences
- Process Analytics
- Formulation Sciences
- B5 Conjugation Team

