Micelle-tagging electrophoresis: Rapid, gel-free detection and separation of DNA

Lingxiao (Bruce) Yan, and Jim Schneider

Department of Chemical Engineering

Center for Complex Fluids Engineering

Center for Nucleic Acids Science and Technologies (CNAST)

Micelle tagging electrophoresis (MTE)

Gel-free DNA electrophoresis method

Provides mobility shifts using micelle drag-tag

Fast runtime

 μ = mobility of tagged DNA μ_0 = mobility of untagged DNA L = length of DNA α = micelle "size"

Long entangled worm-like micelles with $C_i E_i$ surfactants

Elongate

Micelle size can be precisely finetuned with:

$\overline{L} \approx \phi^{1/2} \exp[E_c(T)/2k_B T]$

 \overline{L} : average micelle length Φ : surfactant volume fraction E_c : end-cap energy k_BT : thermal (scaling) energy

- Buffer composition
- Separation temperature

1. Scott et al. J. Phys. Chem., 1965

- 2. Imanish, et al. J. Phys Chem., 2007
- 3. Ahmed, et al. J. Colloid Interface Sci., 2008

High sequencing read length using MTE: greater than 1000 bases

Alkylated DNA fragments separated by 150mM $C_{12}E_5$ / 3M urea buffers (33°C)

EOF suppressant: 5% POP-6, ~3hr pre-conditioning

Length of capillary (I_c)/Length to detector: 43 cm/32 cm

Injection: 2.5 kV, 15 seconds

Applied voltage (V): 15 kV

- Read length ~1,200 bases
- Highest read length with covalently attached drag tags is only 265 base*

Faster than microfluidic devices? Rapid dsDNA separation without lithography

Simultaneous separation of untagged and tagged dsDNA

- Can identity and separate specific DNA (Virus/bacteria/RNA) in the presence of other DNA of similar size
- No apparent upper resolution limit for separating untagged vs tagged dsDNA

Advantages & applications of MTE in dynamic micelle networks

Advantages

- Multiple ways to attach alkyl group to DNA of interest
- Easily implemented on any benchtop CE, even microchips
- Micelle size can be precisely controlled, even during an run
- High sensitivity using long DNA as fluorophore probe to detect sub-fM samples
- Unaffected by presence of serum contaminants

Applications

- Sequencing
- STR analysis
- miRNA detection
- At-line detection of viral/bacterial contaminants
- Plasmid purification

DLS: Surfactant buffers form well-entangled network

Multiple separation mechanisms

- 1. Untagged vs untagged
 - Micelle networks as dynamic sieving matrix
- 2. Tagged vs tagged
 - Short DNA: MTE
 - Long DNA: MTE + sieving

3. Tag vs untagged

 Can identity and separate specific DNA (Virus/bacteria/RNA) in the presence of other DNA of similar size
PNA Target DNA

No apparent upper resolution limit for separating untagged vs tagged dsDNA