

Adapting CMC Bioassay Strategies in Response to an Evolving ADC Pipeline

Patrick Hussmann, PhD

16 April 2024

2

Anatomy, MoA and Evolution of ADCs in Brief

Current CMC Bioassay Control Strategies

Adapting CMC Bioassays: Simplification

Anatomy, MoA and Evolution of ADCs in Brief

3

Anatomy of an ADC

Antibody

- IgG1 subtype most common
- Binds tumor-selective, cell-surface antigen
- Targets payload to cancer cells

Anatomy of an ADC

Payload

Mechanism of Action

Primary MoA is payload delivery and warhead-mediated cell death

- Selectivity of antigen expression and specificity of mAb binding directs ADC to cancer cells
- Linkers should be stable in circulation and release warhead specifically when inside cancer cells
- Goal is to increase TI of non-specific chemotherapy agents by reducing systemic exposure

Timeline of Commercial Approvals

Only 13 commercial approvals to date

*re-approved in 2017

7

Red = withdrawn

Early ADCs demonstrated narrower than expected TI...

2nd generation ADCs: New linker designs increased clinical success

Non-cleavable linker (e.g. Kadcyla®)

- Requires complete lysosomal digestion before release
- Increased stability within circulation

Conjugation at inter-chain disulfide bonds (cysteine)

- Better control of DAR and distribution
- Conjugation in antigen binding region unlikely

warhead

Enzyme-cleavable linker (e.g. Adcetris®)

• Dipeptide and cathepsin $B \rightarrow$ specific to lysosome

Self-immolative spacer

- Self-reactive following cathepsin B digestion for complete release
- Full release of warhead \rightarrow better enables bystander effect

Next generation ADCs and beyond....

New conjugation chemistries

- Site-specific: Inserted cysteines or unnatural AA's
- Branched linkers: [Anami et al., (2017) Ang Chem Inter 56:733-737]
- Non-covalent conjugations: [Gupta et al., (2019) Nat Biom Engin 3:917-929]

Advanced linker-released mechanisms

Non-traditional antibody formats

Growing toolbox of warheads

- Greater diversity of MoAs
- Non-cytotox MoAs (immune activators/engagers)
- Multi-warhead conjugates

More selective target antigens for cancer or tumor microenvironment

Current CMC Bioassay Control Strategies

Standard GMP potency assays for ADCs: Lot-release and Stability

mAb intermediate 1) Target-antigen binding

- Cell or non-cell based
- Ensures expected potency before conjugation
- Common methods: Indirect or competitive ELISAs
- Common readouts: Fluorescence or colorimetric

ADC

2) Target-antigen binding

- Identical assay as mAb intermediate
- Ensures conjugation does not impact target binding
- <u>Request removal from spec at marketing application</u>

- Cell-based
- Common endpoints: ATP production, membrane integrity, caspase activity
- Common readout: Luminescence or colorimetric

(Drug Substance and Product)

ADCs can possess secondary MoAs and other biological activities

capture mechanism too

S

Current Bioassay Control Strategy

1. Conjugation does not impact target binding

- Head-to-head comparison in assay
- Comparison of trending data

- 1. Conjugation does not impact target binding
- 2. Conjugation process is well-controlled
 - Charting of DAR

- 1. Conjugation does not impact target binding
- 2. Conjugation process is controlled
- 3. Performance of ADC cytotoxicity and binding assays are comparable
 - Accuracies and linearity are comparable
 - Leverage qualification, validation, and trending data

- 1. Conjugation does not impact target binding
- 2. Conjugation process is controlled
- 3. Performance of ADC cytotoxicity and binding assays are comparable
- 4. "Linkage" between ADC cytotoxicity and binding assays
 - Historical lot-release data is comparable.
 - Stability testing trends are comparable, or cytotoxicity assay is more sensitive at detecting degradation.

Current Bioassay Control Strategy Through Drug Development

Considering the evolution of ADCs, is the ADC binding assay redundant from the get-go?

Adapting CMC Bioassays: Simplification

21

Purpose of target-antigen binding is to ensure conjugation does not impact target-antigen binding; however...

- 1. Conjugation of modern ADCs is more controlled, and specific to sites located away from antigen binding regions
 - Impact to target antigen binding is inherently minimized within new conjugation strategies

Purpose of target-antigen binding is to ensure conjugation does not impact target-antigen binding; however...

- 1. Conjugation of modern ADCs is more controlled, and specific to sites located away from antigen binding regions
- 2. ADC cytotoxicity assay is fully MoA-reflective, and is dependent on target antigen binding
 - Cytotoxicity assay is intrinsically sensitive to changes in ADC binding affinity, as well as payload/DAR

Purpose of target-antigen binding is to ensure conjugation does not impact target-antigen binding; however...

- 1. Conjugation of modern ADCs is more controlled, and specific to sites located away from antigen binding regions
- 2. ADC cytotoxicity assay is fully MoA-reflective, and is dependent on target antigen binding
 - Changes in binding affinity impact ability/rate of ADC internalization, and thus payload delivery

Impact of N102 Deamidation to ADC-A Biological Activities

Purpose of target-antigen binding is to ensure conjugation does not impact target-antigen binding; however...

- 1. Conjugation of modern ADCs is more controlled, and specific to sites located away from antigen binding regions
- 2. ADC cytotoxicity assay is fully MoA-reflective, and is <u>dependent on target antigen binding</u>

ADC binding assay is redundant to the cytotoxicity assay on lot-release, as ADC-antigen binding and cytotoxicity are inherently connected

1. Demonstrate conjugation minimally impacts target binding

.

- 1. Demonstrate conjugation minimally impacts target binding
- 2. Defend that cytotoxicity assay is fully MoA-reflective and is intrinsically dependent on binding
 - Assay inherently sensitive to changes in antigen binding

.

- 1. Demonstrate conjugation minimally impacts target binding
- 2. Defend that cytotoxicity assay is fully MoA-reflective and is intrinsically dependent on binding
 - Assay inherently sensitive to changes in antigen binding
- 3. Leverage early data linking binding to cytotoxicity, if needed and if available.

•

- 1. Demonstrate conjugation minimally impacts target binding
- 2. Defend that cytotoxicity assay is fully MoA-reflective and is intrinsically dependent on binding
 - Assay inherently sensitive to changes in antigen binding
- 3. Leverage early data linking binding to cytotoxicity, if needed and if available.
- 4. Speak to control of conjugation strategy

.

- 1. Demonstrate conjugation minimally impacts target binding
- 2. Defend that cytotoxicity assay is fully MoA-reflective and is intrinsically dependent on binding
 - Assay inherently sensitive to changes in antigen binding
- 3. Leverage early data linking binding to cytotoxicity, if needed and if available.
- 4. Speak to control of conjugation strategy
- 5. Remind that binding is on control strategy as characterization assay
 - Binding will be measured for future comparability, implementation of new reference standards, etc.

Further areas of simplification?

Do characterization assays/testing for mAb <u>intermediate</u> need to be as extensive as the ADC, when mAb intermediate is never administrated to patients?

Further areas of simplification?

How relevant are in vitro FcEF activities of ADC molecules to in vivo/clinical efficacy?

Conclusions

33

Overall Conclusions

Recent advances in ADC engineering are increasing their success in the clinic

CMC will need to adapt to modern ADCs and increased pipeline. Bioassay is no exception

Current and next generation ADCs may allow areas of simplification to CMC bioassay strategies

- Both ADC binding and cytotoxicity assays on spec. for lot-release may be considered redundant
- Do all characterization assays (e.g. FcRn, FcEFs) for the ADC need to be applied to the mAb intermediate? When does over-characterization of the mAb intermediate contradict its status as an "intermediate".

Simplification of bioassay strategies affords more time to overcome new challenges with key assays

• Example: Diversity of warheads with different MoAs of inducing cell death, as well as newer payload/cleavable moieties, can make development of lot-release cytotoxicity assays more challenging.

Acknowledgements

BPD-CMC

Michaela Wendeler

Niluka de Mel

Rachel Mowery

Chunlei Wang

Paul Santacroce

Zubair Bhuiyan

Linan Ha

Bioassay Development

Arsala Wallace

Deepa Vedam

Michael Hufker

Erin Clausen

Jaytee Sonawane

Christina Grigoriadou

Scott Umlauf

Research/ADPE

Trinity Perry

Krista Kinneer

