

Utilizing HiBiT TCK Bioassays To Validate Cell Therapy & mAb-Mediated Immunotherapy Potency

How Can We Help?

For technical questions or to reorder, visit: promega.com/contact

Nicholas J. Hess Associate Product Manager

Our Mission

Provide innovative biological reagents and integrated systems used in research and applied technology worldwide.

The Promega Approach!

Portfolio of Products

Promega

The Promega Approach!

Product Formats

Luminescence Technology

Hall, M. P. et al. Engineered Luciferase Reporter from a Deep Sea Shrimp Utilizing a Novel Imidazopyrazinone Substrate. ACS Chem. Biol. 7, 1848–1857 (2012).

Optimization

18 kDa

Affinity

Stability

NanoLuc is a blueemitting luciferase with <u>100X</u> brighter signal than Renilla/Firefly/Beetle luciferases

Through complementation studies, we have developed a split Nanoluc with a small, stable, high affir ity tag

SmBiT: VTGYRLFEEIL HiBiT: VSGWRLFKKIS

Dixon, A. S. *et al.* NanoLuc Complementation Reporter Optimized for Accurate Measurement of Protein Interactions in Cells. *ACS Chem Biol* **11**, 400–408 (2016).

Targeted Cell Killing (TCK) Concept, Workflow & Advantages

- HiBiT peptide stable in medium for >3 days
- Little/no background from HiBiT "leaking" from target cell
- HiBiT conjugated to HaloTag (HT) or Nterminus of LDH

Targeted Cell Killing (TCK) Concept, Workflow & Advantages

- Gain-of-signal assay
- No loading, staining or washing steps
- Robust s/n ratio with as little as 2k target cells
 - Luminescence
 measured using a
 standard luminometer
 - Simple analysis to measure % lysis

TCK Portfolio

Blood Cancer Targets

<u>B cell Lymphoma/Leukemia</u> lines (**Raji & Ramos**) expressing **CD19**, **CD20** and **CD22** and **CD19-KO**, **CD20-KO**, and **CD19/20-KO** lines

Myeloid Leukemia line (U937 & K562) expressing CD33 and CLL-1.

Multiple Myeloma line (H929) expressing BCMA and CD38

Solid Cancer Targets

Ovarian Carcinoma lines (OVCAR3 & SKOV3) expressing HER2, MSLN, 5T4, WT and MUC16 and MSLN-KO line

11 unique cell lines

+4 KOs

Breast Adenocarcinoma line (SK-BR-3) expressing HER2 and EpCAM

Lung Carcinoma line (A549) expressing EGFR

1.21

<u>Melanoma</u> line (A375) expressing HER2, CD70, B7-H3

K562 expressing **CD19**, **BCMA**, **GPC3** and **MHC-II** (via CIITA insertion) **CHO-K1** expressing **Claudin 18.2**, **membrane TNFα**, **SARS-CoV-2 spike protein**

Inquire To EA For Product Information

HiBiT TCK Controls

Spontaneous Release control (SR)

 Rate of SR depends on cell type & cell health

Maximum Release control (MR)

- Add digitonin for 100% lysis
 - MR, t = 0: Add digitonin at time zero
 - MR, end: Add digitonin with detection reagent

ADCC Applications Using PBMC

- We have 3-6 qualified donors at any given time
- PBMCs are not pooled
- PBMC are qualified against
 6 different TCK lines
 - Raji/Ramos w/rituximab
 - H929 w/daratumumab

.

- SKOV3/SK-BR-3 w/trastuzumab
 - A549 w/cetuximab
- Each donor is genotyped
 and characterized
- Allows user to measure human variation in biologic potency

TDCC Applications Using CD8+ T cells

- We have 2-4 donors, qualified against 6 TCK lines at any given time
 - Raji/Ramos w/blinatumomab
 - H929 w/Teclistamab
 - SKOV3/SK-BR-3 w/Her-2 BiTe
 - A549 w/EGFR BiTe
 - Each donor is characterized for purity following expansion

Promega

ADCP Applications Using Macrophages

•

Primary human monocytes are isolated and cultured for 5-7 days

• IFN γ used prior to assay to mature M ϕ into an M1 phenotype

ADCP Applications Using Macrophages

Currently have 2 qualified donors

- - Raji/Ramos w/rituximab
 - H929 w/daratumumab
 - SKOV3/SK-BR-3 w/trastuzumab
 - A549 w/cetuximab

CAR-T Applications

Testing Antigen Specificity

"... capacity of CAR T cells to secrete cytokines and mediate cytolysis should be restricted in an antigen-dependent manner, which can be tested by exposure to various cells that vary in their expression of the target antigen."

*FDA Guidance on Considerations for the Development of CAR T Cell Products, 2024

- Specificity of biologic can be determined by either:
 - Using mAb against antigen not expressed on line or;
 - KO-target antigen

Summary

HiBiT Target Cell Killing assay

- Gain-of-signal assay for target cell killing
- No signal contribution from effector cells •
- Add-mix-read, non-lytic format •
- Low numbers of target cells •
- CRISPR KO cell lines to measure target-independent killing •

Blood Cancer Targets

- B cell Lymphoma/Leukemia lines (Raji & Ramos) expressing CD19, CD20 and CD22 and CD19-KO, CD20-KO, and CD19/20-KO lines
- Myeloid Leukemia line (U937 & K562) expressing CD33 and CLL-1.

Multiple Myeloma line (H929) expressing BCMA and CD38

T cell Leukemia line (T2) expressing CD5, CD7, CD30 and CD52

Solid Cancer Targets

Ovarian Carcinoma lines (OVCAR3 & SKOV3) expressing HER2, MSLN, 5T4, WT and MUC16 and MSLN-KO line

Breast Adenocarcinoma line (SK-BR-3) expressing HER2 and EpCAM

Lung Carcinoma line (A549) expressing EGFR

Melanoma line (A375) expressing HER2, CD70, B7-H3

