MAY 25, 2017

Setting up Acceptance Criteria with the Application of Equivalence Test and Geometric Mean Following USP Chapters - A Cell-based Potency Assay Case Study

PRESENTED BY:

Liming Shi

Outline

- Background information
- Assay DOE optimization
- Ready-to-use cell banks/method qualification
- Data driven and stage-appropriate acceptance criteria set up
- Control trending
- Summary and acknowledgement

USP recommendations

- Equivalence test has been recommended by USP for parallelism evaluation
 - Currently most popular F-test has obvious drawbacks
 - Assays with very good precision will fail parallelism test, but assays with poor precision may pass parallelism using *F*-test
- Geometric mean has been recommended by USP for final reportable result calculation
 - > Majority of bioassay results are not normal distributed
 - Geometric mean will be better to address skewed results and be closer to true value

Biological products

Biological products (cont.)

Market Name	Drug Type	Mechanism of Action	Indication	Company	Sales in 2014
Humira	Mab	Anti-TNFa	Psoriasis, RA etc.	Abbvie	\$12.54 b
Sovaldi	Small Molecule	HCV Polymerase Inhibitor	HCV Infection	Gilead	\$10.28 b
Remicade	Chimeric Mab	Anti-TNFa	Psoriasis, RA etc.	Johnson & Johnson	\$9.24 b
Rituxan	Chimeric Mab	Anti-CD20	Lymphoma, Leukemia etc.	Roche	\$8.68 b
Enbrel	Fusion Protein	Bind TNFa	Psoriasis, RA etc.	Amgen	\$8.54 b
Lantus	Insulin Glargine	Long Acting Insulin	Diabetes	Sanofi	\$7.28 b
Avastin	Mab	Anti-VEGF-A	Colon Cancer etc.	Roche	\$6.96 b
Herceptin	Mab	Anti-Her-2	Breast Cancer etc.	Roche	\$6.79 b
Advair	Small Molecule	Ease constriction of the airways	Asthma etc.	GSK	\$6.43 b
Crestor	Small Molecule	Inhibit HMG-CoA Reductase	High Cholesterol	AstraZeneca	\$5.87 b
Neulasta	Pegylated Recombinant Protein	Boosting White Blood Cells	Infection and Neutropenia	Amgen	\$5.86 b
Abilify	Small Molecule	Dopamine Agonist	Depression and Bipolar etc.	BMS	\$5.27 b

Ready-to-use (R2U) cell line in the assay

- Ready-to-use cells have advantages over continuous cell culture
 - Eliminate routine laborious cell culture work
 - > No drifting of cell quality due to cell passages
- The range of passage numbers of R2U cell bank have to be qualified
- Pfizer drug X is a recombinant factor which will stimulate dosedependent cell proliferation in the assay
- Passage 7 R2U WCB had been used in original titration, DOE optimization and first method qualification
- Three additional Working Cell Banks (P5, P8 and P11) were made.
 P5 and P11 were used for R2U/method qualification

Assay plate map (after titration)

Plate 1		-		-	_	-	-	-		-		
	1	2	3	4	5	6	7	8	9	10	11	12
А												
В	d a				q a				qa			
С	ndar	ŋ	ā		ndar	ŋ	ŋ		ndar	ŋ	ŋ	σ
D	Star	le 1	ole 2		Star	le 1	ole 2		Star	le 1	ole 2	rol
E	JCe	amp	dme	Cont	JCe	amp	amp	Cont	JCe	dme	amp	Cont
F	erer	Ň	Š	0	erer	č,	Š	0	erer	ů,	Š	0
G	Ref				Ref				Ref			
Н												

PI	ate	2
----	-----	---

Plate Z												
	1	2	3	4	5	6	7	8	9	10	11	12
А												
В	d b				q p.				q p.			
С	ndar	q	q	q	ndar	q	q	ą	ndar	q	q	q
D	Star	ole 1	ole 2	ol 2	Star	ole 1	ole 2	0 2	Star	ole 1	ole 2	ol 2
E	JCe	dme	dme	ontr	JCe	dme	dme	ontr	JCe	dme	dme	ontr
F	erer	Š	Š	Ŭ	erer	S	Š	Ū	erer	S	Š	Ŭ
G	Ref				Ref				Ref			
Н												

Plate 3	_	-			_							
	1	2	3	4	5	6	7	8	9	10	11	12
А												
В	с ,q с				с g				с q с			
С	Idar	ų	U.	сı L	Jdar	ų	U.	сı L	ndar	ų	сı L	сı I
D	Star	ole 1	ole 2	ol 2	Star	ole 1	ole 2	ol 2	Star	ole 1	ole 2	ol 2
E	JCe	amp	amp	ontı	JCe	amp	ame	onti	JCe	amp	amp	ontı
F	erei	Ň	Ň	Ŭ	erei	Ň	Š	Ŭ	erei	Š	Š	Ŭ
G	Ref				Ref				Ref			
н												

Optimization DOE design with 16 runs

: 🖼 🔚 💋 📓 🖻	••• • • • • •	10 20	Ľx 🚈 🖉	Ŧ		
 1st DOE HSP-130 Design Custom Desi 		Cell	Stimulation	Incubation	S/N	EC50
Criterion I Optin	nal 1	7500	27	24	3.2	0.352
 Screening 	2	10000	30	24	3.9	0.388
Model	3	10000	24	24	3	0.277
DOE Dialog	4	10000	24	16	3.1	0.307
	5	5000	30	16	3.2	0.626
	6	5000	30	24	2.6	0.4
	7	10000	30	16	3.9	0.375
	8	5000	27	20	2.8	0.395
	9	7500	27	20	3.5	0.373
	10	7500	27	20	3.4	0.351
	11	5000	24	24	2.2	0.3
	12	7500	30	20	4	0.328
	13	5000	24	16	2.2	0.313
	14	10000	27	20	3.9	0.406
	15	7500	24	20	2.6	0.265
Columns (5/0)	16	7500	27	16	3.1	0.275

Critical parameters in the assay

Sorted Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Cell(5000,10000)	0.48	0.066894	7.18	0.0004*
Stimulation(24,30)	0.45	0.066894	6.73	0.0005*
Incubation*Incubation	-0.253448	0.130283	-1.95	0.0997
Incubation(16,24)	-0.06	0.066894	-0.90	0.4043
Cell*Incubation	0.0625	0.07479	0.84	0.4353
Stimulation*Incubation	-0.0625	0.07479	-0.84	0.4353
Stimulation*Stimulation	-0.103448	0.130283	-0.79	0.4574
Cell*Stimulation	0.0375	0.07479	0.50	0.6339
Cell*Cell	-0.053448	0.130283	-0.41	0.6959

Sorted Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Stimulation(24,30)	0.0655	0.020073	3.26	0.0172*
Cell*Cell	0.0743966	0.039093	1.90	0.1057
Cell(5000,10000)	-0.0281	0.020073	-1.40	0.2111
Cell*Stimulation	-0.02925	0.022442	-1.30	0.2402
Cell*Incubation	0.02775	0.022442	1.24	0.2625
Stimulation*Incubation	-0.02125	0.022442	-0.95	0.3803
Incubation(16,24)	-0.0179	0.020073	-0.89	0.4069
Stimulation*Stimulation	-0.029603	0.039093	-0.76	0.4776
Incubation*Incubation	-0.012603	0.039093	-0.32	0.7581

DOE optimized final conditions

Finalized assay conditions

Log Concentration (ng/mL)

- Dilution scheme is 1:7 of 8-dose serial dilutions with starting concentration of 375 ng/mL
- 9500 cells/well; 30 hr stimulation and 21 hr substrate incubation

Full curve analysis

Full curve analysis using *F*-test

F-test may factor out weighting and it is less sensitive

- If fit extremely well, the denominator will be very small, therefore, it will fail parallelism
- If fit not well, the denominator will be large and it may pass parallelism

Parallelism evaluation using *F*-test

> F stat must be \leq F critical value of 7.591 (α = 0.01 with numerator DF of 3 and denominator DF of 8)

Relative potency recovery

Sample and control relative potency must be within 70% to 130% to its target relative potency

Qualification: Accuracy, Repeatability and IP

Analyst	DOLL Coll Donk	Plata			Sample	_	
Analyst	RZU Geli Balik	Plate	50	75	100	125	150
		1-3	57.3	87.1	99.6	128	145
		4-6	56.3	87.5	92.8	121	143
	Passago 5	7-9	55.1	87.0	100	126	134
	Fassaye J	Mean	56.2	87.2	97.5	125	141
		Repeatability %RSD	1.96	0.30	4.15	2.88	4.17
٨		Accuracy/Recovery (%)	112	116	97.5	100	93.8
~		1-3	47.9	78.0	98.6	126	177
		4-6	40.2	67.2	103	129	172
	Decesso 11	7-9	49.7	68.5	95.9	115	165
	rassaye II	Mean	45.9	71.2	99.2	123	171
		Repeatability %RSD	11.0	8.28	3.61	5.98	3.52
		Accuracy/Recovery (%)	91.9	95.0	99.2	98.7	114
		1-3	49.1	67.7	111	126	163
		4-6	51.6	67.3	109	136	145
	Decesso 5	7-9	47.0	69.6	108	137	144
	Passaye 5	Mean	49.2	68.2	109	133	151
		Repeatability %RSD	4.68	1.80	1.40	4.57	7.10
C		Accuracy/Recovery (%)	98.5	90.9	109	106	100
U		1-3	46.3	80.0	113	123	174
		4-6	48.2	96.4	103	124	165
	Decesso 11	7-9	43.5	87.4	107	123	180
	Passage 11	Mean	46.0	87.9	108	123	173
		Repeatability %RSD	5.14	9.34	4.67	0.47	4.36
		Accuracy/Recovery (%)	92.0		108	98.7	115
Intermediate	Precision (P5, P11 for analy	rst A, C; n=4)	9.80	13.2	5.72	3.78	9.80

Qualification: Linearity and Specificity

Assay trending program (ATP)

- Trending program is very important
 - Increases assay consistency and quality
 - Decreases assay failure and repeat
- Establish trending program
 - Assay condition is finalized and accumulate enough assay results
 - Calculate control limits in control chart
- The Shewart control chart provides the tool to distinguish between the two types of variation in a process
 - Common cause variation (random)
 - Special cause variation (root cause)

Assay trending program (cont.)

A	8	c	P	Q	1	5	1	U	V.	W	X	Y	z	AA	-A8	AC .	AD	Æ	Al	AL	
Assay Date	Analyst	Sample 10	Auerage Signal Noise	A Unconstrained	8 Unconstrained	C Unconstrained	D Unconstrained	A		¢	0	Max/Min	Individual ReiPot (%)	Recovery Reportable Result (N)	95%-CI Lower	95% Cl Upper	Ftest Prob	F Test Stat	Note	Starting conc	
26-May-16	н	CTRL 1	3.7	3.368+06	0.825	0.474	1,238+07	3.385+06	0.836	0.52	1245+07	3.67	108		0.695	1.464	0.991	0.035	Qualification	575	CMB
26-May-16	H	6PO	3.7	3.44E+06	78.04	0.055	3.385+06	3.415+06	0.862	0.594	1.24E+07	3.64	0		-4.068-07	4.066-07	0.796	0.342	Qualification	375	CM8
26-May-16	28	Ranibizumab	3.7	3.568+06	34.28	2.781	3.368+06	3.458+06	0.97	0.512	1.216+07	3.51	0		-3.286-05	3.285-05	0.319	1.374	Qualification	375	CM8 P
2-Jun-16	GD	CTRL 1	35	3.228+06	0.742	0.578	1.095+07	3.158+06	0.666	0.453	1.116-07	3.52	110		0.7	1.502	0.485	0.891	Qualification	375	CM8 P
2-Jun-16	GD	CTRL 2	35	3.025+06	0.508	0.445	1.156+07	5.02E+06	0.628	0.422	1.115+07	3.68	103		0.666	1.405	0.811	0.32	Qualification	375	CM8 P
2-Jun-16	GD	CTRL 3	3.5	3.066+06	0.637	0.435	1.096+07	3.11E+06	0.693	0.403	1.076+07	3.44	106	106	0.702	1.409	0.253	1.651	Qualification	375	CM8
2-Jun-16	GD	Sample 1-1	3.5	3.196+06	0.741	0.682	1.07E+07	3.14E+06	0.661	0.438	1.106+07	3.50	55.8		0.36	0.756	0.275	1.559	Qualification	375	CMB
2-Jun-16	GD	Sample 1-2	3.5	3.145+06	0.665	0.827	1.105+07	3.09E+06	0.659	0.405	1.105-07	3.56	51.4		0.353	0.674	0.958	0.1	Qualification	575	CM8
2-Jun-16	GD	Sample 1-3	3.5	3,168+06	0.725	0.678	1.058+07	3.165+06	0.737	0.367	1.055+07	3.52	55.7	109	0.429	0.684	0.968	0.082	Qualification	375	CM8 P
2-Jun-16	GD	Sample 2-1	3.5	3.075+06	0.648	0.284	1.105+07	3.08E+06	0.627	0,456	1.126+07	3.64	148		0.75	2.204	0.918	0.164	Qualification	375	CMB
2-Jun-16	GD	Sample 2-2	3.5	3.76E+06	0.727	0.321	1.095+07	3.358+06	0.671	0.458	1.096+07	3.25	174		0.57	2.915	0.505	0.852	Qualification	375	CMB P
2-Jun-15	GD	Sample 2-3	3.5	3.158+06	0.713	0.261	1.065+07	3.158+06	0.731	0.377	1.055+07	3.35	152	105	1.177	1.855	0.782	0.362	Qualification	375	CMBR
2-Jun-16	GD	CTRL 1	3.6	3.128+06	0.683	0.46	1.115+07	3.128+06	0.691	0.42	1.096+07	3.49	300		0.645	1.548	0.653	0.566	Qualification	375	CMB
2-Jun-16	GD	CTRL 2	3.6	3.105+06	0.746	0.317	1.085+07	3.108+06	0.705	0.384	1.096+07	3.52	115		0.802	1.505	0.819	0.308	Qualification	375	CMB P
2-lun-16	GD	CTRL 3	3.6	3.106+06	0.641	0.392	1.156+07	3.10E+06	0.575	0.367	1.166+07	3.74	86.6	101	0.49	1.242	0.557	0.74	Qualification	375	CM8
2-Jun-16	GD	Sample 1-1	5.6	3.196+06	0.751	0.769	1.095+07	5.168+06	0.725	0.402	1.085+07	3.42	54.7		0.578	0.715	0.811	0.52	Qualification	575	CMBR
2-Jun-16	GD	Sample 1-2	3.6	3.228+06	0.734	0.751	1.085+07	3.162+06	0.7	0,398	1.096+07	3.45	51.7		0.359	0.676	0.906	0.181	Qualification	375	CM8 P
2-Jun-16	GD	Sample 1-3	3.6	3.196+06	0.645	0.873	1.146+07	3.158+06	0.58	0.373	1.16E+07	3.68	40	97.6	0.287	0.512	0.254	1.753	Qualification	375	CMB
2-Jun-16	GD	Sample 2-1	3.6	3.065+06	0.698	0.249	1.095+07	3.09E+06	0.699	0.394	1.085+07	3.50	161		0.983	2.228	0.942	0.126	Qualification	375	CMB
2-Jun-16	GD	Sample 2-2	3.6	3.076+06	0.682	0.265	1.105+07	3.098+06	0.676	0.402	1.105+07	3.56	150		0.928	2.08	0.995	0.028	Qualification	575	CMB
2-Jun-16	GD	Sample 2-3	3.6	3.008+06	0.622	0.294	1.146+07	3.048+06	0.566	0.34	1.156-07	3.78	301	91.6	0.626	1,395	0.455	1.07	Qualification	375	CMB
2-lun-16	H	CTRL 1	3.5	3.086+06	0.651	0.722	1,215+07	3.185+06	0.711	0.714	1.176+07	3.68	114		0.722	1.561	0.151	2.328	Qualification	375	CMB
2-lun-16	24	CTRL 2	3.5	3.186+06	0.695	0.606	1.155+07	5.208+06	0.739	0.562	1.136+07	3.55	91.4		0.606	1.222	0.701	0.487	Qualification	375	CMB
2-Jun-16	34	CTRL 3	3.5	3.048+06	0.732	0.661	1.115+07	3.09E+06	0.705	0.803	1.11E+07	3.59	117	107	0.791	1.542	0.797	0.341	Qualification	375	CMB
2-Jun-16	28	Sample 1-1	35	3.27E+06	0.833	1.263	1.146+07	3.275+06	0.81	0.622	1.14E+07	3.49	48.9		0.371	0.607	0.948	0.116	Qualification	375	CM8
2-Jun-16	28	Sample 1-2	3.5	3.176+06	0.758	1.508	1.168+07	3.19E+06	0.774	0.592	1.14E+07	3.57	47.6		0.332	0.621	0.898	0.193	Qualification	375	CM8 P
2-Jun-16	. 28	Sample 1-3	3.5	3.196+06	0.747	1.695	1.125+07	3.176+06	0.714	0.873	1.125+07	3.53	53.6	100	0.582	0.69	0.606	0.649	Qualification	575	CM8 P
2-Jun-16	24	Sample 2-1	3.5	3.16E+06	0.725	0.407	1.176+07	5.22E+06	0.754	0.655	1.15E+07	3.57	168		1.215	2.145	0.705	0.48	Qualification	575	CM8 P
2-Jun-16	н	Sample 2-2	3.5	3.166+06	0.82	0.386	1.125+07	3.196+06	0.805	0.545	1.13E+07	3.54	135		0.908	1.795	0.951	0.111	Qualification	375	CMB
2-Jun-15	26	Sample 2-3	3.5	3.146+06	0.783	0.52	1.095+07	3.14E+06	0.726	0.784	1.106+07	3.50	342	98.9	1.012	1.825	0.652	0.568	Qualification	375	CMBR
2-Jun-16	28	CTRL 1	3.8	3,138+06	0.686	0.696	1.205+07	5.138+06	0.656	0.725	1245+07	3.96	87.8		0.44	1.515	0.614	0.634	Qualification	375	CM8 P
2-Jun-16	H	CTRL 2	3.8	3.00E+06	0.559	1,108	1.315+07	3.085+06	0.62	0.854	1.276+07	4.12	92.9		0.478	1.38	0.709	0,474	Qualification	375	CMB P
2-Jun-16	38	CTRL 3	3.8	3.228+06	0.692	0.624	1.138+07	3.22E+06	0.734	0.554	1.156+07	3.51	89.4	90.0	0.595	1.194	0.762	0.393	Qualification	375	CM8
2-lun-16	28	Sample 1-1	3.8	3.206+06	0.712	1.495	1.215+07	3.168+06	0.664	0.768	1.256+07	3.96	44.7		0.274	0.619	0.711	0.47	Qualification	375	CMB
2-Jun-16	н	Sample 1-2	3.8	3.115+06	0.718	1.545	1.208+07	5.125+06	0.696	0.688	1.225+07	5.91	46.9		0.296	0.642	0.91	0.176	Qualification	575	CMB
2-Jun-16	н	Sample 1-3	3.8	3.20E+06	0.763	1.296	1168+07	3.21E+06	0.773	0.588	1.14E+07	3.55	49	95.7	0.338	0.643	0.652	0.567	Qualification	375	CMB
2-lun-16	14	Sample 3-1	18	1145-05	0.68	0.467	1205-07	1145-06	0.659	0715	1215+07	8.92	181		0.725	1.885	0.416	1.065	Qualification	875	CMER

System suitability/Control Trending

UCL=120.75 120 110 RelPot (%) Avg=99.77 00 90 80 LCL=78.80 06/15/2016-05/20/2016-05/20/2016-05/26/2016 06/02/2016 06/16/2016 06/23/2016 06/23/2016-10/03/2016 03/21/2017-04/04/2017-Assay Date

Capability Anal	ysis		
Specification	Value	Portion	% Actual
Lower Spec Limit	70	Below LSL	0.0000
Spec Target	100	Above USL	0.0000
Upper Spec Limit	130	Total Outside	0.0000

Long Term Sigma

Capability Analysis							
Specification	Value	Portion	% Actual				
Lower Spec Limit	70	Below LSL	0.0000				
Spec Target	100	Above USL	0.0000				
Upper Spec Limit	130	Total Outside	0.0000				

Long Term Sigma

Capability	Index Lo	ower Cl	Uppe	er Cl
СР	1.430	1.139	1	.721
CPK	1.419	1.114	1	.725
CPM	1.430	1.154	1	.736
CPL	1.419	1.114	1	.723
CPU	1.441	1.131	1	.749
				Sigma
Portion	Percer	ıt	PPM	Quality
Below LSL	0.001	0 10.	2903	5.758
Above USL	0.000	0 7	6050	5 0 7 2

Full curve analysis using equivalence test

Similarity is demonstrated when:

 a_t/a_s ; b_t/b_s ; and d_t/d_s fall within preset acceptance criteria

For one bioassay example:

Acceptance Parameter	Sample Size (N)	Mean	Standard Deviation	LAL	UAL
\mathbf{R}^2	680	0.991	0.007	0.97	1.00
a_{S}/a_{R}	452	0.984	0.042	0.85	1.15
d_{S}/d_{R}	452	0.983	0.983	0.80	1.20
b_{S}/b_{R}	452	0.956	0.163	0.55	1.45

Amgen, Inc., Frank Ye 2005

Concept of equivalence test

- Switch the null and alternative hypothesis
- Set up data driven pre-determined goalposts
- Equivalence test: two-one sided t-test (TOST)
- The two null hypothesis will be rejected if

 θ is the goalpost which is predetermined

Comparison of traditional hypothesis test and equivalence test

Assessment of tolerance interval for lower asymptote

Parameter Estimates						
Туре	Parameter	Estimate	Lower 95%	Upper 95%		
Location	μ	0.9981102	0.992859	1.0033615		
Dispersion	σ	0.0424959	0.0390937	0.0465517		
-2log(Likelihood) = -884.619940417157						
Goodne	ss-of-Fit T	est				

Shapiro-Wilk W Test W Prob<W 0.778798 <.0001*

Note: Ho = The data is from the Normal distribution. Small p-values reject Ho.

Custom Quantiles

Quantiles					
				Actual	
Quantile	Estimate	Lower 95%	Upper 95%	Coverage	
0.5%	0.79825	0.79	1.25	72.01	
50%	1	1	1	95.51	
99.5%	1.23625	0.79	1.25	72.01	

Smoothed Empirical Likelihood Quantiles

Quantile	Estimate	Lower 95%	Upper 95%
0.5%	0.81754	0.78853	0.84794
50%	1.00019	0.99821	1.00232
99.5%	1.20145	1.07212	1.25147

Assessment of tolerance interval for slope

Fitted Normal

Parameter Estimates					
Туре	Parameter	Estimate	Lower 95%	Upper 95%	
Location	μ	1.0020866	0.9903283	1.013845	
Dispersion	σ	0.0951553	0.0875373	0.1042368	
-2log(Likelihood) = -475,119930272204					

Goodness-of-Fit Test

Shapiro-Wilk W Test

W Prob<W

0.976338 0.0003

Note: Ho = The data is from the Normal distribution. Small p-values reject Ho.

Custom Quantiles

Quantiles

				Actual
Quantile	Estimate	Lower 95%	Upper 95%	Coverage
0.5%	0.81	0.81	1.32	72.01
50%	0.99	0.98	1	95.51
99.5%	1.31175	0.81	1.32	72.01

Smoothed Empirical Likelihood Quantiles

Quantile	Estimate	Lower 95%	Upper 95%
0.5%	0.80732	0.80173	0.81609
50%	0.99133	0.97996	1.00369
99.5%	1.29534	1.24719	1.32541

Fitted Normal

Parameter Estimates						
Туре	Parameter	Estimate	Lower 95%	Upper 95%		

Location μ	0.9984646	0.9955629	1.0013662			
Dispersion σ	0.0234817	0.0216018	0.0257227			
-2log(Likelihood) = -1185.95943688135						

Goodness-of-Fit Test

Shapiro-Wilk W Test

W Prob<W

0.976098 0.0003*

Note: Ho = The data is from the Normal distribution. Small p-values reject Ho.

Custom Quantiles

-			
1		• •	00
v	ua	LII	C3
	_		

				Actual
Quantile	Estimate	Lower 95%	Upper 95%	Coverage
0.5%	0.911	0.9	1.06	72.01
50%	1	1	1	95.51
99.5%	1.06	0.9	1.06	72.01

Smoothed Empirical Likelihood Quantiles

Quantile	Estimate	Lower 95%	Upper 95%
0.5%	0.93866	0.89865	0.94845
50%	0.99982	0.99786	1.00165
99.5%	1.05923	1.04368	1.06179

AC based on non-parametric tolerance interval

- The distribution of parameters of a, b, d are not normal
- Data transformations are not normal distributed either
- The ratios of parameters a, b, d to reference standard were chosen for acceptance criteria set up
- Non-parametric tolerance intervals for a, b, d were calculated from 267 data points generated using reference standard material
 - addressing pure analytical variation

Ratio of parameter	Acceptance Range			
a/a'	0.85 - 1.07			
b/b'	0.82 - 1.25			
d/d'	0.95–1.04			

Reportable results control strategy

- Arithmetic mean of three independent assay results
 - > %RSD criterion among three independent assay results (e.g. ≤20% RSD)
- Weighted mean of three independent assay results
 - > %RSD criterion among three independent assay results (e.g. ≤20% RSD)
- Geometric mean of three independent assay results
 - Confidence interval criterion for three independent assay results

The weighted mean is calculated as

$$\overline{M} = \frac{\sum_{i=1}^{3} (W_i M_i)}{\sum_{i=1}^{3} W_i}$$

- The individual result with less variation will have more influence on the final reportable result than the individual result with larger variation
- An acceptance criterion for the weighted mean is determined by %RSD the same as for an arithmetic mean

Geometric mean

- The data log transformation generates normal distributed results
- Therefore, geometric mean addresses better for skewed results and is closer to true value
- The Geometric Mean calculation

Geometric Mean = e^{in RP1+in RP2+in RP3}

 Geometric Mean is controlled by the confidence interval (e.g. 75% to 133%)

Reportable result calculation using geometric mean

В	С	D	E	F	G	Н		J	K	L	М	Ν	0	Р
Comple	Sample													
Sample	Plate 1	Plate 2	Plate 3											
1	56.7	52.3	46.9											
2	152	158	168											
3	69.5	70.2	74.7											
4	126	125	135											
5	101	105	108											
6	106	110	104											
										Antilog				
											Ant	ilog		
Sample	Plate 1	Plate 2	Plate 3		Average	SD	n	LL	UL	Reportable Result (geometric Mean)	Ant LL	ilog UL	Relative 95% CI LL	Relative 95% CI UL
Sample	Plate 1 4.0377742	Plate 2 3.9569964	Plate 3 3.848017675		Average 3.9475961	SD 0.0952269	n 3	LL 3.7110394	UL 4.1841528	Reportable Result (geometric Mean) 51.810669	Ant LL 40.896292	ilog UL 65.637868	Relative 95% CI LL 78.934113	Relative 95% CI UL 126.68794
Sample	Plate 1 4.0377742 5.0238805	Plate 2 3.9569964 5.062595	Plate 3 3.848017675 5.123963979		Average 3.9475961 5.0701465	SD 0.0952269 0.0504672	n 3 3	LL 3.7110394 4.9447789	UL 4.1841528 5.1955141	Reportable Result (geometric Mean) 51.810669 159.19765	Ant LL 40.896292 140.4398	ilog UL 65.637868 180.4609	Relative 95% CI LL 78.934113 88.217256	Relative 95% CI UL 126.68794 113.35651
Sample 1 2 3	Plate 1 4.0377742 5.0238805 4.2413268	Plate 2 3.9569964 5.062595 4.2513483	Plate 3 3.848017675 5.123963979 4.313480092		Average 3.9475961 5.0701465 4.2687184	SD 0.0952269 0.0504672 0.0390873	n 3 3 3	LL 3.7110394 4.9447789 4.1716202	UL 4.1841528 5.1955141 4.3658166	Reportable Result (geometric Mean) 51.810669 159.19765 71.430031	Ant LL 40.896292 140.4398 64.820388	ilog UL 65.637868 180.4609 78.71365	Relative 95% CI LL 78.934113 88.217256 90.746689	Relative 95% CI UL 126.68794 113.35651 110.19686
Sample 1 2 3 4	Plate 1 4.0377742 5.0238805 4.2413268 4.8362819	Plate 2 3.9569964 5.062595 4.2513483 4.8283137	Plate 3 3.848017675 5.123963979 4.313480092 4.905274778		Average 3.9475961 5.0701465 4.2687184 4.8566235	SD 0.0952269 0.0504672 0.0390873 0.0423212	n 3 3 3 3	LL 3.7110394 4.9447789 4.1716202 4.7514918	UL 4.1841528 5.1955141 4.3658166 4.9617552	Reportable Result (geometric Mean) 51.810669 159.19765 71.430031 128.58928	Ant LL 40.896292 140.4398 64.820388 115.75684	ilog UL 65.637868 180.4609 78.71365 142.8443	Relative 95% CI LL 78.934113 88.217256 90.746689 90.020594	Relative 95% CI UL 126.68794 113.35651 110.19686 111.08569
Sample 1 2 3 4 5	Plate 1 4.0377742 5.0238805 4.2413268 4.8362819 4.6151205	Plate 2 3.9569964 5.062595 4.2513483 4.8283137 4.6539604	Plate 3 3.848017675 5.123963979 4.313480092 4.905274778 4.682131227		Average 3.9475961 5.0701465 4.2687184 4.8566235 4.650404	SD 0.0952269 0.0504672 0.0390873 0.0423212 0.0336466	n 3 3 3 3 3 3	LL 3.7110394 4.9447789 4.1716202 4.7514918 4.5668212	UL 4.1841528 5.1955141 4.3658166 4.9617552 4.7339868	Reportable Result (geometric Mean) 51.810669 159.19765 71.430031 128.58928 104.62725	Ant LL 40.896292 140.4398 64.820388 115.75684 96.237704	ilog UL 65.637868 180.4609 78.71365 142.8443 113.74816	Relative 95% CI LL 78.934113 88.217256 90.746689 90.020594 91.981491	Relative 95% CI UL 126.68794 113.35651 110.19686 111.08569 108.71752
Sample 1 2 3 4 5 6	Plate 1 4.0377742 5.0238805 4.2413268 4.8362819 4.6151205 4.6634391	Plate 2 3.9569964 5.062595 4.2513483 4.8283137 4.6539604 4.7004804	Plate 3 3.848017675 5.123963979 4.313480092 4.905274778 4.682131227 4.644390899		Average 3.9475961 5.0701465 4.2687184 4.8566235 4.650404 4.6694368	SD 0.0952269 0.0504672 0.0390873 0.0423212 0.0336466 0.0285217	n 3 3 3 3 3 3 3	LL 3.7110394 4.9447789 4.1716202 4.7514918 4.5668212 4.598585	UL 4.1841528 5.1955141 4.3658166 4.9617552 4.7339868 4.7402886	Reportable Result (geometric Mean) 51.810669 159.19765 71.430031 128.58928 104.62725 106.63767	Ant LL 40.896292 140.4398 64.820388 115.75684 96.237704 99.343645	ilog UL 65.637868 180.4609 78.71365 142.8443 113.74816 114.46723	Relative 95% CI LL 78.934113 88.217256 90.746689 90.020594 91.981491 93.159996	Relative 95% CI UL 126.68794 113.35651 110.19686 111.08569 108.71752 107.34221

Finalized acceptance criteria

- Assay acceptance criteria
 - Control sample must pass equivalence test for parallelism
 - The relative potency of control sample must be within the range of 70% to 130% of the reference standard
 - The upper/lower asymptote in constrained model must be equal or larger than 3
- Sample acceptance criteria
 - Sample must pass equivalence test for parallelism
 - The relative potency of sample must be within the qualified range of 50% to 150% of the reference standard
 - The upper/lower asymptote in constrained model must be equal or larger than 3
- 90% confidence interval of the final reportable result must be within 75% to 133%

Summary

- The cell-based potency assay and R2U cell banks have been successfully optimized and qualified
- Both the parallelism evaluation and the final reportable result have been adopted according to the recommendations from the most recent USP chapter 1033
- The acceptance criteria have been set up based on accumulated historical data
- Cell-based potency assay is a critical analytical test in CMC package. Traditional method has to be evolved to meet the higher regulatory and industry standards

Acknowledgement

- Jackie Hoang
- Ana Marija Plavec
- Glenn Deaver
- Bioassay group
- Bioanalytical Sciences
- Richard Montes
- Julie TerWee
- Cathy Srebalus Barnes

