

Analytical strategies to monitor polysorbate in biotherapeutics

Christian Bell, Analytical Development, Roche

March 2018

PS20 quantification and characterization

PS20 degradation products

Polysorbate in biotherapeutics *Structure and use*

- Polysorbates (PS) are widely used as surface active agents in biopharma
 - ~ 3 out of 4 biologics include polysorbate as part of their formulation
- Ability to form micelles and thus particularly preventing protein aggregation as a result of adsorption at interfaces (air/water)
- Consist of hydrophilic polyoxyethylene (POE) sorbitan linked to fatty acids by an ester bond

- Chain length and relative content of specific fatty acids is defined in pharmacopoeia
 - PS20: 40-60% Laureate, i.e. saturated C12

Polysorbate in biotherapeutics *Known degradation pathways*

Potential impact on product quality

Arising free radicals can cause protein modifications

Fatty acids can form insoluble particles

PS20 quantification and characterization

PS20 degradation products

Analytical strategies for polysorbates Quantification

- Fluorescence Micelle Assay (FMA)
 - Relies on micelle forming ability
 of the surfactant
 - Increase in fluorescence of NPN
 upon micelle formation

• Mixed Mode HPLC with ELSD/CAD detection (MM-ELSD/CAD)

- Mixed mode anion exchange or cation exchange column (eg Oasis MCX)
- PS20 detection using ELSD or CAD detector
- Also suitable for surfactants that do not form micelles, eg Poloxamer 188

Analytical strategies for polysorbates *Characterization*

- Heterogeneity of PS20 can be further characterized using a shallow gradient RP-ELSD/CAD method (Hewitt et al. 2011)
- Method is capable of resolving mono- from poly-ester species

Analytical strategies for polysorbates *Choice of method is critical to monitor PS degradation*

- Since FMA relies on micelle formation, its response is not uniform across the different PS20 ester species (Lippold et al 2017)
- Main component, POE sorbitan monolaureate, only detectable w/ MM-ELSD/CAD

Roche

Analytical strategies for polysorbates *Case studies*

Thermal 40°C (oxidative) Degradation

- Polyesters are degraded more readily w/ temperature stress (Auto-Oxidation)
- FMA *underestimates* PS20 content since it cannot quantify monoester species

Hydrolytic degradation (sample, control)

- Hydrolytic degradation is usually specific, i.e. either mono- or polyester are more readily degraded
- When monoesters are degraded, FMA *overestimates* true PS20 content

PS20 quantification and characterization

PS20 degradation products

Analytical strategies for polysorbate *Quantifying degradation products*

- Degradation products from oxidative PS degradation can be detected using stirbar-sorptive absorption coupled to GC-MS (Ravuri et al. 2011)
- Hydrolytic degradation results in formation of free fatty acids which can be de-tected by UPLC (following fluorescent labeling, Tomlinson et al. 2015) or by LC-MS
- Molar ratio of degraded PS20 and free fatty acids can give insight into major degradation pathway and confirm hydrolytic degradation

PS20 quantification and characterization

PS20 degradation products

Considerations for Drug Product control strategy *Driven by process and product knowledge*

No change in PS content over product shelf life

- Leverage available data from development studies
- PS20 content not part of DP release or DP stability control strategy
- Monitoring only (eg as IPC)

Significant change in PS content but no impact on Product CQAs

- Provide justification that PS is not a critical excipient (incl. assessment on impact of potential degradation products)
- PS20 content not specified for DP release and stability

Significant change in PS content and impact on product CQAs

Roche

- Include PS content for DP release and stability
- Include appropriate justification for EoSL limit incl. potential impact of PS degradation products

Doing now what patients need next