

Enhanced Analytical Development for Complex Antibody Formats

Markus Wild, F. Hoffmann - La Roche Ltd., Switzerland

Outline

- Introduction
- Tools for Enhanced Method Development
- Case Study 1
- Case Study 2

Increase of complexity within the last 10 years

Complex Antibody Formats - Consequences

- New product related substances and impurities
- New critical quality attributes (CQAs)
- Less prior knowledge and more unknowns
- More analytical challenges have been observed with platform methods
 - Insufficient resolution
 - Carry over
 - Insufficient sample stability
 - Insufficient robustness
 - Method induced artifacts
- -> Need to switch from platform methods to product specific methods
- -> Increased investment in analytical development
- -> Enhanced analytical development is needed in order to adress complexity and unknowns

Analytical Quality by Design Principles (AQbD)

- Use of quality by design (QbD) principles according to the guidelines of international conference on harmonization ICH Q8-11
 - predefined objective
 - science and risk-based development
 - use multivariate DoE studies to define method operational limits
 - control strategy
 - lifecycle management
 - continual improvement

-> Analytical quality by design (AQbD) helps to develop robust methods which are applicable throughout the lifecycle of the method.

-> The objective is to understand, reduce and control sources of variability.

Method Lifecycle

Method Development Strategy

Method Lifecycle Management

Knowledge Management

CQA: critical quality attribute, ATP: Analytical Target Profile, RA: risk assessment

Analytical Target Profile (ATP)

CQAs: glycosylation, size variants charge variants, oxidation, potency etc

Accuracy, Precision, Sensitivity, Range etc / ICH Q2

Stable test procedure (≥48h)
No harmful ingredients
Operator safety
User requirements: low costs, speed etc

Risk Assessment

Risk assessments are performed in order to identify and assess critical method variables and parameters that can impact the ATP. These structured risk assessments are used to guide experimental plans.

Ishikawa Diagram

A tool known as CNX is used to classify the identified factors. It must be decided which factors can be controlled (C), which are potential noise factors (N) and which should be assessed experimentally (X) to determine acceptable conditions and ranges

Preliminary Hazard Analysis (PHA)

_			РНА	1	PHA2	PHA	L	PHA	2
# 🚬	Category 📑	Factor		*	Classif. 🚬	PRN	Y	PRN	*
1	Method	flow rate	X		С	12		12	
2	Method	predilution	X		X	12		12	
3	Method	detection wavelength	C		С	12		12	
4	Method	sample preparation: diluent	X		С	60		12	
5	Method	sample preparation: final concentration	X		X	36		12	
6	Method	sample preparation: storage of diluted sample - temperature	X		С	60		12	
7	Method	sample preparation: storage of diluted sample - time	X		С	36		12	
8	Method	sample preparation: volumentric dilution	X		X	12		12	
9	Method	sample preparation: CpB digestion	X		X	12		12	
10	Method	RS: # of references	X		X	12		12	
11	Method	RS: sample bracketing	X		X	12		12	
12	Method	integration: approach manual/ automatic	X		С	36		12	
13	Method	integration: tangential/ exponential	X		С	12		12	
14	Method	integration: one baseline vs. multiple enforced integration	X		С	60		36	
15	Method	mobile phase : buffer substance	X		С	60		12	
16	Method	mobile phase: pH	X		С	60		12	
17	Method	mobile phase: buffer concentration	X		С	36		12	
18	Method	mobile phase: ionic strength	X		С	60		12	
19	Method	mobile phase: water	X		С	12		12	
20	Method	mobile phase: filtration	X		С	36		36	
21	Method	gradient	X		С	60		12	
22	Method	column temperature	X		С	60		12	
23	Method	autosampler temperature	X		С	12		12	
24	Method	injection: volume	X		X	12		12	
25	Method	injection: amount	X		С	36		36	
26	Method	injection: No. of sample injections per sequence	X		X	12		12	
27	Method	separation time	X		С	36		12	
28	Method	column: rinse pressure & time	X		X	12		12	
29	Method	sample loop: rinse pressure & time	X		X	12		12	
30	Method	column (type)	X		С	60		12	

A preliminary hazard analysis (PHA) is be used for the further risk assessment. Relevant factors like X-factors and critical N-factors which might have an influence on the method performance should be selected and assessed.

High risk factors should be evaluated during method development by using a Design of Experiments approach (DoE).

Risk Assessments

Case Study 1

• IEC method development for a BsAb

«Triggers» to develop a new IEC Method

- need for improved resolution of acidic and basic species
- need for increased method robustness regarding:
 - retention of LC/LC₂ signal
 - baseline / peak (group) delimiters
 - column lot-to-lot and system-to-system variability

Analytical Target Profile Ion Exchange Chromatography

Торіс	Examples						
Method-operational Intent	Separation of Acidic Region (AR) and Basic Region (BR) from Main Peak (MP)						
	Separation of impurity peaks among each other, detectable and quantifiable						
Method Performance Criteria	 MP, AR, BR: ≤ 6.0 % RSD repeatability 						
	• MP, AR, BR: 94.0-106.0 % recovery						
Range	 MP: ≥ 80%-120% of nominal protein concentration Other components: QL- 120% of upper spec limit 						
Operating Conditions and	Suitable for HPLC platforms used in QC network						
Environment	Column from established vendor and globally available						
	No carry over						
	Acceptable method performance for at least						
	 two column types 						
	3 different resin batches						
	 Short sample to sample run time, ≥ 48h of consecutive analyses 						
	 Preferably no harmful chemicals used 						

Selection of Parameters for Method Development derived from Risk Assessment (PHA)

Roche

Selection of Parameters for Method Development derived from Risk Assessment (PHA)

Potential Influence on Method Performance:																			
accuracy		accuracy	carry over	column performance	column robustness	method failure rate	method performance	method robustness	peak identification	peak resolution	peak signal	quantification (range)	reproducibility	sample integrity	sample stability	sensitivity	specificity		
Factor	-		-		-		4	•	-	4	4	4	-	•	4	•	4	-	PRN 斗
sample preparation: diluent		х								x			x		x		х		60
sample preparation: injection amount			х							х	х	х				х			60
sample preparation: storage of diluted																			
sample - temperature		x							x			x			x				60
integration: one baseline vs. multiple																			
enforced integration		X											X			x			60
mobile phase: buffer substance							х	х		х			х				x		60
mobile phase: pH							х	x		х			x				х		60
mobile phase: ionic strength							х	х		х			х				х		60
gradient										х		х					х		60
column temperature										x		x					x		60
column (type)						x	x												60

Method Development Approach

Factor	Screening with COST \implies	Optimization with DoE
stationary phase	 10 different columns (weak/strong cation exchange, source, vendor, length, particle size etc.) temperature 	 Set to strong cation exchange (YMC, BioPro SP-F) temperature range: 28 - 45°C
mobile phase	 buffer component (4 different buffer systems) pH range flow rate 0.7 - 1.1 salt content (up to 750 mM) 	 buffer component: BES Buffer concentration: 15 – 25 mM pH range: 6.6 – 7.2 flow rate: 0.7 – 0.9 salt content: 488 mM NaCl
gradient	salt gradientgradient slope	 shape endpoint of slope 12 – 18%
injection		• injection amount: 20 – 210 μg

high impact factors from PHA1

Comparison Chromatograms: Original Method vs. Method improved by COST

Method optimization: COST or DoE-based? Design Space Plot

- Opportunity for further improvement elucidated by DoE modelling
- As result much better resolution could be obtained

Comparison Chromatograms: Original Method vs. Final Method improved by DOE

Final Method: Design Space Plot

- Very low probability of failure
- Highly robust method developed by using DoE

Roche

Case Study 2

• SEC Method development for a BsAb

«Triggers» to develop a new SEC Method

Starting point: platform SEC method

need for improved resolution of potential critical species (HMW 1, HMW 2)

Analytical Target Profile Size Exclusion Chromatography

Торіс	Examples
Method-operational Intent	Separation of critical size variants i.e. High Molecular Weight species including HMW 1 from Main Peak detectable and quantifiable
Critical Quality Attribute (CQA)	HMW species (e.g. HMW 1, HMW 2)
Method Performance Criteria	 Main Peak: ≤ 6.0 % RSD repeatability HMWs: ≤ 0.2 SD repeatability Main Peak: 94.0-106.0 % recovery HMWs: assumed true value ± 0.2 (area%)
Range	 Main Peak: at least 80%-120% of nominal protein concentration HMWs: QL- 3.0 %

Probability of iOOS for Normally Distributed Data

Limitations:

Target values and process variability usually unknown at time of method development!

Selection of Parameters for Method Development derived from Risk Assessment (PHA)

				Pot	tential Influence on Method Performance:																	
				accuracy	carry over	column performance	column robustness	method failure rate	method performance	method robustness	peak identification	peak resolution	peak signal	quantification (range)	reproducibility	sample integrity	sample stability	sensitivity	specificity			
# 💌	Category 🔹	Factor	Classification	-T-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	PRN 🔄	·
1	Method	flow rate	x			x	x					x									60	
2	Method	predilution	x	х											x		x				60	
4	Method	sample preparation: diluent	X	х								х			x		x		х		36	
5	Method	sample preparation: final concentration	x		x							х	x	х				х			36	4
6	Method	sample preparation: storage of diluted sample - temperature	X	х							x			х			x				36	4
7	Method	sample preparation: storage of diluted sample - time	X	х										х			x				36	
8	Method	sample preparation: volumentric dilution	X												х						12	
9	Method	RS: # of references	Х					x													12	
10	Method	RS: sample bracketing	X						х			_]	12	
11	Method	integration: approach manual/ automatic	Х	х				х			х			х	х			х]	36	
12	Method	integration: tangential/ exponential	X									_			х			х]	12	
13	Method	integration: one baseline vs. multiple enforced integration	X	х								_			х			х]	12	
14	Method	mobile phase: buffer substance	X						х	х		x			х				х]	36	4
15	Method	mobile phase: pH	X			_			х	х		x			х				х]	36	4
16	Method	mobile phase: buffer concentration	X			<u> </u>			х	х		x			Х				Х		36	
17	Method	mobile phase: ionic strength	X			_			х	х		x			х				х]	60	
18	Method	mobile phase: water	X			_					x	_]	12	4
19	Method	mobile phase: filtration	X			x					x	_									36	_
20	Method	column temperature	X			<u> </u>						x		х					х		60	
21	Method	autosampler temperature	X	X		_					x	_			Х		x				12	4
22	Method	injection: volume	X			_						x	х					х			36	4
23	Method	injection: amount	X			_						х	х					х			36	4
24	Method	injection: No. of sample injections per sequence	X	X	Х	X						_									36	4
25	Method	separation time	X			_						х									36	
26	Method	column: rinse pressure & time	X		X	-	X														12	4
27	Method	sample loop: rinse pressure & time	X		X	-						_									12	
28	Method	column (type)	X					X	X			_									60	1

	Pot	Potential Influence on Method Performance:																
	accuracy	carry over	column performance	column robustness	method failure rate	method performance	method robustness	peak identification	peak resolution	peak signal	quantification (range)	reproducibility	sample integrity	sample stability	sensitivity	specificity		
Factor	-	-	۲	-	-	•	4	•	-	-	-	-	-	-	-	-	•	PRN 💷
flow rate			x	x					х									60
predilution	x											x		x				60
mobile phase: ionic strength						x	x		х			x				x		60
column temperature									х		x					x		60
column (type)					x	x												60

Method Development Approach

Factor	Screening with COST	Optimization with DoE
Column	YMC Pack Diol 200 YMC Pack Diol 300 TSKgel Super SW mAb HR TSKgel Super SW mAb HTP TSKgel Ultra SW mAb Aggregate UPLC BEH200	UPLC BEH200
Column temperature		25°C – 45°C
Buffer composition	Sodium phosphate	
Buffer concentration	0.05 – 0.3 M	0.1 – 0.3 M
Mobile phase pH	pH range	6.2 – 7.8
Protein load	10 -150 µg	
Injection volume	2 – 30 µL	
Flow rate	0.1 – 0.5 mL/min	

Method optimization - Design Space Plot

Column temperature = $25^{\circ}C$

Column temperature = 40° C

Factors at the plot axes:	Low:	High:
1st axis: Buffer concentration 🔻	0.1	0.3
2nd axis: pH 🗸	6.2	7.8

Column temperature = $35^{\circ}C$

Column temperature = 45° C

Comparison Chromatograms: Original Method vs. Final Method improved by DoE

Original method (SE-HPLC)

Minutes

Final method (SE-UPLC)

Modified factors

- 1. Column material & dimensions
- 2. Column temperature
- 3. Buffer concentration
- 4. Salt concentration
- 5. Flow rate
- 6. pH

Benefits of Enhanced Method Development

- AQbD tools provide a science- and risk-based framework for developing enhanced understanding of analytical methods
- Structured risk assessments are used to guide experimental plans
- Enhanced method robustness and ruggedness through the lifecycle
- Less analytical method related Out-of-Specification and failure investigations
- More robust method knowledge transfer due to enhanced analytical method understanding

Acknowledgements

- Alexandra Henriou
- Corinne Litzler
- Marion Krafft
- Steffen Kiessig
- Oxana Pester
- Katia Kolb
- Sébastien Violini
- Georg Hafenmair

- Volker Schaible
- Cecile Avenal
- Michael Grote
- Hans Beiderbeck
- Mahdi Adibzadeh

Doing now what patients need next